Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Brains Cells May Regenerate After Radiotherapy

By BiotechDaily International staff writers
Posted on 28 Aug 2013
Scientists have long believed that healthy brain cells, once damaged by radiation designed to kill brain tumors, cannot regenerate. However, new research in lab mice suggests that neural stem cells, the body’s source of new brain cells, are resistant to radiation, and can be woken up from a hibernation-like state to reproduce and generate new cells able to migrate, replace damaged cells, and possibly restore lost function.

“Despite being hit hard by radiation, it turns out that neural stem cells are like the special forces, on standby waiting to be activated,” noted Alfredo Quiñones-Hinojosa, MD, a professor of neurosurgery at the Johns Hopkins University School of Medicine (Baltimore, MD, USA), and leader of a study described online in the journal Stem Cells. “Now we might figure out how to unleash the potential of these stem cells to repair human brain damage.”

The findings, Dr. Quiñones-Hinojosa reported, may have impact for not only for brain cancer patients, but also for people with progressive neurologic disorders such as multiple sclerosis (MS) and Parkinson’s disease (PD), in which cognitive functions worsen as the brain suffers permanent damage over time.

The researchers examined the impact of radiation on mouse neural stem cells by assessing the mice’s responses to a subsequent brain injury. To do the research, the researchers used a device designed and used only at Johns Hopkins that effectively simulates localized radiation used in human cancer therapy. Other technology, according to the scientists, uses too much radiation to precisely impersonate the clinical experience of brain cancer patients.

In the weeks after radiation, the researchers injected the mice with lysolecithin, a compound that caused brain damage by inducing a demyelinating brain lesion, much like that present in MS. They found that neural stem cells within the irradiated subventricular zone of the brain generated new cells, which rushed to the damaged site to rescue newly injured cells. One month later, the new cells had integrated into the demyelinated area where new myelin, the protein insulation that protects nerves, was being produced.

“These mice have brain damage, but that doesn’t mean it’s irreparable,” Dr. Quiñones-Hinojosa said. “This research is like detective work. We’re putting a lot of different clues together. This is another tiny piece of the puzzle. The brain has some innate capabilities to regenerate and we hope there is a way to take advantage of them. If we can let loose this potential in humans, we may be able to help them recover from radiation therapy, strokes, brain trauma, you name it.”

These findings may not be all good news, however. Neural stem cells have been linked to brain tumor development, Dr. Quiñones-Hinojosa stressed. The radiation resistance his research discovered, he noted, could clarify why glioblastoma, the most lethal and aggressive form of brain cancer, is so difficult to treat with radiation.

Related Links:

Johns Hopkins University School of Medicine



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Lab Technologies

view channel

White-Matter Deficits Found in Codeine-Containing Cough Syrup Users

A magnetic resonance imaging (MRI) study of chronic users of codeine-containing cough syrups (CCS) has found deficits in specific regions of brain white matter and linked these changes with increased impulsivity in codeine-containing cough syrup users. These findings were consistent with findings from earlier research of... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.