Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Flavonoids Kill Human Pancreatic Cancer Cells

By BiotechDaily International staff writers
Posted on 26 Aug 2013
Flavonoids in celery, artichokes, and especially Mexican oregano contain flavonoids that kill human pancreatic cancer cells by enzymatic inhibition, according to a new study.

Two researchers at the University of Illinois (UIC; Chicago, IL, USA) examined the inhibitory effects of flavonoids, limonoids, phenolic acids, and ascorbic acid citrus fruit bioactive compounds on BxPC-3 and PANC-1 human pancreatic cancer cells in vitro, focusing on the antiproliferative mechanism of action of the flavonoid apigenin as related to the glycogen synthase kinase-3β (GSK-3β) nuclear factor kappa B signaling pathway.

The researchers found that apigenin inhibited the GSK-3β enzymatic pathway, leading to a decrease in the production of antiapoptotic genes in the pancreatic cancer cells, thus encouraging the cancer cells to self-destruct via apoptosis. In one of the cancer cell lines, the percentage of cells undergoing apoptosis went from 8.4% in cells that had not been treated with the flavonoid to 43.8% in cells that had been treated with a 50-micromolar dose. Treatment with the flavonoid also modified gene expression, causing upregulation of certain genes associated with pro-inflammatory cytokines such interleukin 17. The study was published on August 13, 2013, in Molecular Nutrition and Food Research.

“Apigenin alone induced cell death in two aggressive human pancreatic cancer cell lines. But we received the best results when we pretreated cancer cells with apigenin for 24 hours, then applied the chemotherapeutic drug gemcitabine for 36 hours,” said study coauthor professor Elvira de Mejia, PhD. “Pancreatic cancer patients would probably not be able to eat enough flavonoid-rich foods to raise blood plasma levels of the flavonoid to an effective level. But scientists could design drugs that would achieve those concentrations.”

“The trick seemed to be using the flavonoids as a pretreatment instead of applying them and the chemotherapeutic drug simultaneously. Even though the topic is still controversial, our study indicated that taking antioxidant supplements on the same day as chemotherapeutic drugs may negate the effect of those drugs,” added coauthor Jodee Johnson, PhD. “That happens because flavonoids can act as antioxidants. One of the ways that chemotherapeutic drugs kill cells is based on their pro-oxidant activity, meaning that flavonoids and chemotherapeutic drugs may compete with each other when they're introduced at the same time.”

Flavonoids are a class of plant secondary metabolites that may modify allergens, viruses, and carcinogens, and demonstrate significant antioxidant activity in vitro that may be stronger than those of vitamin C and E. However, inside the human body, they have little or no direct antioxidant value, since flavonoids are poorly absorbed (less than 5%), with most of what is absorbed being quickly metabolized and excreted.

Related Links:

University of Illinois




comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.