Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Curbing Sugar Intake May Slash Risk of Cancer or Progression in the Diabetic and Obese

By BiotechDaily International staff writers
Posted on 14 Aug 2013
By blocking dietary sugar and its activity in tumor cells, investigators believe that people may be able to reduce their cancer risk and progression.

The study, conducted in fruit flies by researchers from the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and published August 1, 2013, in the journal Cell, provides insight as to why metabolism-related diseases such as diabetes or obesity are associated with certain types of cancer, including breast, pancreatic, liver, and colon cancers.

Ross Cagan, PhD, professor of developmental and regenerative biology at Mount Sinai, has developed a cancer model in the fruit fly Drosophila that allows scientists to evaluate diseases in the perspective of the whole animal and numerous genetic targets, instead of just looking at the link of one gene to one disease. Dr. Cagan used fruit flies in his research to determine the effects of diet and insulin resistance on cancer progression.

“Previous research has established a strong correlation between metabolic diseases and pancreatic, breast, liver, and colon cancers, but we have not determined how tumors grow so aggressively in this environment if they do not have the energy provided by glucose,” said Dr. Cagan, who is also associate dean of the Graduate School of Biomedical Sciences at Mount Sinai. “Using our fruit fly model, we discovered how tumors overcome insulin resistance in the body and turn metabolic dysfunction to their advantage.”

Dr. Cagan and his team modified fruit flies to express Ras and Src, two key oncogenes, which resulted in the development of small head tumors. Next, they fed the flies with a high-sugar diet that triggered insulin resistance. They discovered that high dietary sugar acts together with Ras and Src to increase insulin sensitivity specifically in tumor cells. By increasing the signaling of an important pathway called Wingless/Wnt, they increased tumor cells’ insulin receptors to further promote insulin sensitivity. This cascade of activity altered these small, weak tumors and caused them to begin growing aggressively.

Armed with three new drug targets—glucose, the Ras/Src oncogenes, and Wingless/Wnt signaling—Dr. Cagan and his coworkers identified compounds that can block the process. They treated the flies with acarbose, a drug for diabetes treatment; a compound called AD81; and an agent called pyrvinium. Acarbose blocked sugar conversion to glucose; AD81 blocked Ras/Src and caused cell death; and pyrvinium suppressed Wingless/Wnt signaling. Combined, this blend of drugs considerably reduced tumor size and progression.

“Our study shows that sugar activates oncogenes in the tumor, which then promote insulin sensitivity, meaning that the exorbitant glucose levels in the blood pour into the tumor, having nowhere else to go in the insulin-resistant body,” said Dr. Cagan. “We have identified a three-drug combination that stops this signaling activity and tumor growth in its tracks, without affecting normal cell function.”

In the next phase, the researcher plans to find out whether the same cascade of occurrences is happening in humans with insulin resistance using tumor samples. Based on those findings, Dr. Cagan and his team will evaluate substances that can manipulate this oncogene/sugar cascade.

Related Links:

Icahn School of Medicine at Mount Sinai



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.