Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Curbing Sugar Intake May Slash Risk of Cancer or Progression in the Diabetic and Obese

By BiotechDaily International staff writers
Posted on 14 Aug 2013
Print article
By blocking dietary sugar and its activity in tumor cells, investigators believe that people may be able to reduce their cancer risk and progression.

The study, conducted in fruit flies by researchers from the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and published August 1, 2013, in the journal Cell, provides insight as to why metabolism-related diseases such as diabetes or obesity are associated with certain types of cancer, including breast, pancreatic, liver, and colon cancers.

Ross Cagan, PhD, professor of developmental and regenerative biology at Mount Sinai, has developed a cancer model in the fruit fly Drosophila that allows scientists to evaluate diseases in the perspective of the whole animal and numerous genetic targets, instead of just looking at the link of one gene to one disease. Dr. Cagan used fruit flies in his research to determine the effects of diet and insulin resistance on cancer progression.

“Previous research has established a strong correlation between metabolic diseases and pancreatic, breast, liver, and colon cancers, but we have not determined how tumors grow so aggressively in this environment if they do not have the energy provided by glucose,” said Dr. Cagan, who is also associate dean of the Graduate School of Biomedical Sciences at Mount Sinai. “Using our fruit fly model, we discovered how tumors overcome insulin resistance in the body and turn metabolic dysfunction to their advantage.”

Dr. Cagan and his team modified fruit flies to express Ras and Src, two key oncogenes, which resulted in the development of small head tumors. Next, they fed the flies with a high-sugar diet that triggered insulin resistance. They discovered that high dietary sugar acts together with Ras and Src to increase insulin sensitivity specifically in tumor cells. By increasing the signaling of an important pathway called Wingless/Wnt, they increased tumor cells’ insulin receptors to further promote insulin sensitivity. This cascade of activity altered these small, weak tumors and caused them to begin growing aggressively.

Armed with three new drug targets—glucose, the Ras/Src oncogenes, and Wingless/Wnt signaling—Dr. Cagan and his coworkers identified compounds that can block the process. They treated the flies with acarbose, a drug for diabetes treatment; a compound called AD81; and an agent called pyrvinium. Acarbose blocked sugar conversion to glucose; AD81 blocked Ras/Src and caused cell death; and pyrvinium suppressed Wingless/Wnt signaling. Combined, this blend of drugs considerably reduced tumor size and progression.

“Our study shows that sugar activates oncogenes in the tumor, which then promote insulin sensitivity, meaning that the exorbitant glucose levels in the blood pour into the tumor, having nowhere else to go in the insulin-resistant body,” said Dr. Cagan. “We have identified a three-drug combination that stops this signaling activity and tumor growth in its tracks, without affecting normal cell function.”

In the next phase, the researcher plans to find out whether the same cascade of occurrences is happening in humans with insulin resistance using tumor samples. Based on those findings, Dr. Cagan and his team will evaluate substances that can manipulate this oncogene/sugar cascade.

Related Links:

Icahn School of Medicine at Mount Sinai



Print article

Channels

Genomics/Proteomics

view channel
Image: An expression of NOTCH 1 (green color) in ACC stem cells (Photo courtesy of Yale University).

Adenoid Cystic Carcinoma Stem Cells Depend on NOTCH1 and SOX10 Signaling

Cancer researchers have isolated a stem cell population from the cells making up an adenoid cystic carcinoma (ACC) tumor and showed that the signaling factors NOTCH1 and SOX10 were essential for the cancer... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.