Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Micromedic Technologies

Suppressing HIV Infection with Soybean Compound

By BiotechDaily International staff writers
Posted on 14 Aug 2013
Print article
A compound found in soybeans may become an effective HIV treatment, which could eliminate the drug resistance problems faced by current therapies, according to new research.

Genistein, derived from soybeans and other plants, shows potential in suppressing the HIV infection, according to Dr. Yuntao Wu, an infectious diseases and the department of molecular and microbiology professor with the George Mason University (Fairfax, VA, USA)-based US National Center for Biodefense.

Nevertheless, that does not mean individuals should begin eating large amounts of soy products. “Although genistein is rich in several plants such as soybeans, it is still uncertain whether the amount of genistein we consume from eating soy is sufficient to inhibit HIV,” Dr. Wu said.

Genistein functions by blocking the communication from a cell’s surface sensors to its insides and is known as a tyrosine kinase inhibitor. These sensors, located on the cell’s surface, tell the cell about its environment and also communicate with other cells. HIV uses some of these surface sensors to trick the cell to send signals inside. These signals change cell structure so that the virus can get inside and spread infection.

However, genistein blocks the signal and stops HIV from finding a way inside the cell. It takes a different approach than the conventional antiretroviral drug used to suppress HIV. “Instead of directly acting on the virus, genistein interferes with the cellular processes that are necessary for the virus to infect cells,” Dr. Wu noted. “Thus, it makes the virus more difficult to become resistant to the drug. Our study is currently it its early stage. If clinically proven effective, genistein may be used as a complement treatment for HIV infection.”

Dr. Wu sees possibilities in this plant-based approach, which may address drug toxicity issues as well. Because genistein is plant-derived, it may be able to sidestep drug toxicity, a common byproduct of the daily and lifelong pharmaceutical regimen faced by patients with HIV to keep the disease at bay, according to Dr. Wu. Typically, patients take a combination of multiple drugs to inhibit the virus. The frequency can lead to drug toxicity. Furthermore, HIV mutates and becomes drug-resistant.

Dr. Wu and his team are now looking for ways to determine how much genistein is required to inhibit HIV. Because there is a possibility that plants may not have high enough levels, this agent would need to be refined and further developed.

Related Links:

George Mason University




Print article

Channels

Genomics/Proteomics

view channel
Image: Molecular model of E3 ubiquitin ligase (green), E2 ubiquitin enzyme (orange), \"activated ubiquitin\" (cyan), and \"allosteric ubiquitin\" (blue) (Photo courtesy of Dr. Bernhard Lechtenberg, Sanford Burnham Prebys Medical Discovery Institute).

Researchers Resolve Molecular Structure of Critical Ubiquitin-Binding Enzyme

The molecular structure of a protein complex critically involved in diverse cellular functions such as cell signaling, DNA repair, and mounting anti-inflammatory and immune responses has been elucidated... Read more

Drug Discovery

view channel
Image: The “cellXpress” automated imaging analysis software enables to efficiently and accurately detect cellular responses (reflected in green) to nephrotoxic compounds (Photo courtesy of Agency for Science, Technology and Research (Singapore)).

First High-Throughput Imaging Platform for Predicting Kidney Toxicity of Chemicals

Researchers have developed a high-throughput platform of automated cellular imaging that efficiently and accurately predicts renal toxicity of chemical compounds without animal testing, providing an improved... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.