Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Suppressing HIV Infection with Soybean Compound

By BiotechDaily International staff writers
Posted on 14 Aug 2013
A compound found in soybeans may become an effective HIV treatment, which could eliminate the drug resistance problems faced by current therapies, according to new research.

Genistein, derived from soybeans and other plants, shows potential in suppressing the HIV infection, according to Dr. Yuntao Wu, an infectious diseases and the department of molecular and microbiology professor with the George Mason University (Fairfax, VA, USA)-based US National Center for Biodefense.

Nevertheless, that does not mean individuals should begin eating large amounts of soy products. “Although genistein is rich in several plants such as soybeans, it is still uncertain whether the amount of genistein we consume from eating soy is sufficient to inhibit HIV,” Dr. Wu said.

Genistein functions by blocking the communication from a cell’s surface sensors to its insides and is known as a tyrosine kinase inhibitor. These sensors, located on the cell’s surface, tell the cell about its environment and also communicate with other cells. HIV uses some of these surface sensors to trick the cell to send signals inside. These signals change cell structure so that the virus can get inside and spread infection.

However, genistein blocks the signal and stops HIV from finding a way inside the cell. It takes a different approach than the conventional antiretroviral drug used to suppress HIV. “Instead of directly acting on the virus, genistein interferes with the cellular processes that are necessary for the virus to infect cells,” Dr. Wu noted. “Thus, it makes the virus more difficult to become resistant to the drug. Our study is currently it its early stage. If clinically proven effective, genistein may be used as a complement treatment for HIV infection.”

Dr. Wu sees possibilities in this plant-based approach, which may address drug toxicity issues as well. Because genistein is plant-derived, it may be able to sidestep drug toxicity, a common byproduct of the daily and lifelong pharmaceutical regimen faced by patients with HIV to keep the disease at bay, according to Dr. Wu. Typically, patients take a combination of multiple drugs to inhibit the virus. The frequency can lead to drug toxicity. Furthermore, HIV mutates and becomes drug-resistant.

Dr. Wu and his team are now looking for ways to determine how much genistein is required to inhibit HIV. Because there is a possibility that plants may not have high enough levels, this agent would need to be refined and further developed.

Related Links:

George Mason University




comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.