Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Suppressing HIV Infection with Soybean Compound

By BiotechDaily International staff writers
Posted on 14 Aug 2013
A compound found in soybeans may become an effective HIV treatment, which could eliminate the drug resistance problems faced by current therapies, according to new research.

Genistein, derived from soybeans and other plants, shows potential in suppressing the HIV infection, according to Dr. Yuntao Wu, an infectious diseases and the department of molecular and microbiology professor with the George Mason University (Fairfax, VA, USA)-based US National Center for Biodefense.

Nevertheless, that does not mean individuals should begin eating large amounts of soy products. “Although genistein is rich in several plants such as soybeans, it is still uncertain whether the amount of genistein we consume from eating soy is sufficient to inhibit HIV,” Dr. Wu said.

Genistein functions by blocking the communication from a cell’s surface sensors to its insides and is known as a tyrosine kinase inhibitor. These sensors, located on the cell’s surface, tell the cell about its environment and also communicate with other cells. HIV uses some of these surface sensors to trick the cell to send signals inside. These signals change cell structure so that the virus can get inside and spread infection.

However, genistein blocks the signal and stops HIV from finding a way inside the cell. It takes a different approach than the conventional antiretroviral drug used to suppress HIV. “Instead of directly acting on the virus, genistein interferes with the cellular processes that are necessary for the virus to infect cells,” Dr. Wu noted. “Thus, it makes the virus more difficult to become resistant to the drug. Our study is currently it its early stage. If clinically proven effective, genistein may be used as a complement treatment for HIV infection.”

Dr. Wu sees possibilities in this plant-based approach, which may address drug toxicity issues as well. Because genistein is plant-derived, it may be able to sidestep drug toxicity, a common byproduct of the daily and lifelong pharmaceutical regimen faced by patients with HIV to keep the disease at bay, according to Dr. Wu. Typically, patients take a combination of multiple drugs to inhibit the virus. The frequency can lead to drug toxicity. Furthermore, HIV mutates and becomes drug-resistant.

Dr. Wu and his team are now looking for ways to determine how much genistein is required to inhibit HIV. Because there is a possibility that plants may not have high enough levels, this agent would need to be refined and further developed.

Related Links:

George Mason University




Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.