Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Therapy Developed That May Inhibit Kidney Disorder by Differentiating Disease Processes and Biomarkers

By BiotechDaily International staff writers
Posted on 06 Aug 2013
Image: A kit used to collect exhaled breath for metabolic analysis in a study of methylmalonic academia (MMA) (Photo courtesy of Maggie Bartlett, NHGRI; NIH Clinical Center, Bethesda, MD, USA).
Image: A kit used to collect exhaled breath for metabolic analysis in a study of methylmalonic academia (MMA) (Photo courtesy of Maggie Bartlett, NHGRI; NIH Clinical Center, Bethesda, MD, USA).
A group of investigators has overcome a major biologic obstacle in an effort to find enhanced treatments for patients with a rare disease called methylmalonic acidemia (MMA). The scientists, utilizing genetically engineered mice, identified a series of biomarkers of kidney damage—a key characteristic of the disorder—and demonstrated that antioxidant therapy protected kidney function in the mice.

Researchers from the US National Human Genome Research Institute (NHGRI; Bethesda, MD, USA), part of the National Institutes of Health (NIH), substantiated the same biomarkers in 46 patients with MMA seen at the NIH Clinical Center. The biomarkers offer new tools for monitoring disease progression and the effects of therapies, both of which will be helpful in the researchers' design of clinical trials for this disease.

The discovery, reported in the July 29, 2013, advance online issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS), creates the possibility for use of antioxidant therapy in a clinical trial for patients with MMA. It also demonstrates the processes by which mitochondrial dysfunction affects kidney disease. Mitochondrial dysfunction is a problem not only in rare disorders, such as MMA, but also in a broad range of common disorders, such as diabetes, obesity, and cancer.

Related Links:

National Human Genome Research Institute



SLAS - Society for Laboratory Automation and Screening
RANDOX LABORATORIES
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.