We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Converting Blood Cells into Therapeutic Approaches for Autoimmune Disease

By LabMedica International staff writers
Posted on 31 Jul 2013
Print article
Cells from one individual’s blood could be transformed into autoimmune diseases therapy, disorders such as rheumatoid arthritis and Crohn’s disease.

Chang Kim, a professor of comparative pathobiology at Purdue University (West Lafayette, IN, USA), has devised an application to direct the differentiation of T-cells. The technology employs naïve T-cells, immature cells from which all T-cells develop, and stimulates them to become suppressive T-cells that block the development of painful inflammation associated with autoimmune diseases.

Naïve T-cells can be collected from a patient’s blood, treated and then re-injected, according to Prof. Kim, who also is a university faculty scholar and member of Purdue’s Center for Cancer Research and Weldon School of Biomedical Engineering. “These cells are being directed to become a type of cell that is already present in our bodies, where a fine balance between inflammatory T-cells and suppressive T-cells is maintained,” he said. “We are just tipping the scales in favor of suppressive T-cells to reduce inflammation. Because of this there are none of the toxic side effects associated with many immune-suppressive drugs. In addition, cells from one's own body aren’t rejected and remain in the body much longer. Instead of taking a pill every day, this could lead to a treatment administered, for example, every six months.”

Autoimmune diseases occur when the immune system attacks one’s own body instead of fighting off infection from bacteria, viruses, and other foreign cells. An overactive immune system sends T-cells to healthy tissue and organs where they cause inflammation and tissue destruction.

Suppressive T-cells travel to regions of inflammation and inhibit the T-cells there without substantially reducing the number of T-cells in other areas of the body where they are needed for effective immune function, according to Dr. Kim. “Treatment with suppressive T-cells has the potential to be a much more precise and targeted regulation of immune function than what currently exists,” he said. “Treating autoimmune diseases without compromising a patient’s immune system has been a big problem in the field. We need to catch the thief without taking down the house, and this has that potential.”

Prof. Kim discovered that naïve T-cells cultured in the presence of the hormone progesterone can be induced to become suppressive T-cells. This project’s articles were published July 2013 in the Journal of Immunology and the European Journal of Immunology. The group also filed a patent based on this work.

Laboratory mice research showed that about 500,000 suppressive T-cells are needed to have an effect on inflammation, according to Prof. Kim. “More work needs to be done to determine the appropriate dosage of cells for a human patient, but the amount of blood many people regularly donate would likely yield multiple treatments,” he said.

In the next phase, Prof. Kim plans to explore at the molecular level how progesterone causes the cells to differentiate into suppressive T-cells and to discover the proteins and protein receptors involved. He stressed that a better determination of the molecular regulation of these cells could lead to a way to control their differentiation and function without using progesterone.

Related Links:

Purdue University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.