Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Converting Blood Cells into Therapeutic Approaches for Autoimmune Disease

By BiotechDaily International staff writers
Posted on 31 Jul 2013
Cells from one individual’s blood could be transformed into autoimmune diseases therapy, disorders such as rheumatoid arthritis and Crohn’s disease.

Chang Kim, a professor of comparative pathobiology at Purdue University (West Lafayette, IN, USA), has devised an application to direct the differentiation of T-cells. The technology employs naïve T-cells, immature cells from which all T-cells develop, and stimulates them to become suppressive T-cells that block the development of painful inflammation associated with autoimmune diseases.

Naïve T-cells can be collected from a patient’s blood, treated and then re-injected, according to Prof. Kim, who also is a university faculty scholar and member of Purdue’s Center for Cancer Research and Weldon School of Biomedical Engineering. “These cells are being directed to become a type of cell that is already present in our bodies, where a fine balance between inflammatory T-cells and suppressive T-cells is maintained,” he said. “We are just tipping the scales in favor of suppressive T-cells to reduce inflammation. Because of this there are none of the toxic side effects associated with many immune-suppressive drugs. In addition, cells from one's own body aren’t rejected and remain in the body much longer. Instead of taking a pill every day, this could lead to a treatment administered, for example, every six months.”

Autoimmune diseases occur when the immune system attacks one’s own body instead of fighting off infection from bacteria, viruses, and other foreign cells. An overactive immune system sends T-cells to healthy tissue and organs where they cause inflammation and tissue destruction.

Suppressive T-cells travel to regions of inflammation and inhibit the T-cells there without substantially reducing the number of T-cells in other areas of the body where they are needed for effective immune function, according to Dr. Kim. “Treatment with suppressive T-cells has the potential to be a much more precise and targeted regulation of immune function than what currently exists,” he said. “Treating autoimmune diseases without compromising a patient’s immune system has been a big problem in the field. We need to catch the thief without taking down the house, and this has that potential.”

Prof. Kim discovered that naïve T-cells cultured in the presence of the hormone progesterone can be induced to become suppressive T-cells. This project’s articles were published July 2013 in the Journal of Immunology and the European Journal of Immunology. The group also filed a patent based on this work.

Laboratory mice research showed that about 500,000 suppressive T-cells are needed to have an effect on inflammation, according to Prof. Kim. “More work needs to be done to determine the appropriate dosage of cells for a human patient, but the amount of blood many people regularly donate would likely yield multiple treatments,” he said.

In the next phase, Prof. Kim plans to explore at the molecular level how progesterone causes the cells to differentiate into suppressive T-cells and to discover the proteins and protein receptors involved. He stressed that a better determination of the molecular regulation of these cells could lead to a way to control their differentiation and function without using progesterone.

Related Links:

Purdue University




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.