Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Protein Block Stops Vascular Damage in Diabetes

By BiotechDaily International staff writers
Posted on 24 Jun 2013
A new study demonstrates that the inhibition of a protein activated when blood sugar is raised suppresses accelerated atherosclerosis in diabetic mice.

Researchers at Lund University (Sweden) conducted a study in Streptozotocin (STZ)-induced diabetic in mice to investigate whether Nuclear Factor of Activated T-Cells (NFAT) activation may be a link between diabetes and atherogenesis, by measuring blood monocytes, endothelial activation, and inflammatory markers in the aorta, and proinflammatory cytokines in plasma. The study was initiated following previous studies that showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin.

The study showed that NFAT activation resulted in 2.2 fold increase in aortic atherosclerosis and enhanced proinflammatory burden. Subsequent in vivo treatment with the NFAT blocker A-285222 for four weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, while having no effect in nondiabetic mice. The STZ-treated mice also exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. In fact, the substance did not affect NFAT in any other cells or organs, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. The study was published in the June 3, 2013, issue of PLOS one.

“That is important. We don’t want to suppress the whole immune system. We also saw that the substance only has an effect when NFAT is active. The plaque formation was only stopped in diabetic mice and not in nondiabetic mice, which had normal blood sugar levels”, said lead author Anna Zetterqvist, MSc. “It appears that there are different mechanisms behind plaque formation caused by diabetes and not caused by diabetes.”

A wealth of epidemiologic evidence demonstrate that hyperglycemia promotes a widespread and aggressive form of atherosclerosis in the coronary arteries, lower extremities, and extracranial carotid arteries of diabetic patients, causing nearly 80% of all deaths and much of their disability. Both diabetes type 1 and type 2 are independent risk factors for myocardial infarction (MI), peripheral vascular disease (PVD), and stroke. In addition, recent studies also show a causal association between elevated glucose levels and increased carotid intima-media thickness, a marker of subclinical atherosclerosis.

Related Links:
Lund University



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.