Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Protein Block Stops Vascular Damage in Diabetes

By BiotechDaily International staff writers
Posted on 24 Jun 2013
A new study demonstrates that the inhibition of a protein activated when blood sugar is raised suppresses accelerated atherosclerosis in diabetic mice.

Researchers at Lund University (Sweden) conducted a study in Streptozotocin (STZ)-induced diabetic in mice to investigate whether Nuclear Factor of Activated T-Cells (NFAT) activation may be a link between diabetes and atherogenesis, by measuring blood monocytes, endothelial activation, and inflammatory markers in the aorta, and proinflammatory cytokines in plasma. The study was initiated following previous studies that showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin.

The study showed that NFAT activation resulted in 2.2 fold increase in aortic atherosclerosis and enhanced proinflammatory burden. Subsequent in vivo treatment with the NFAT blocker A-285222 for four weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, while having no effect in nondiabetic mice. The STZ-treated mice also exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. In fact, the substance did not affect NFAT in any other cells or organs, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. The study was published in the June 3, 2013, issue of PLOS one.

“That is important. We don’t want to suppress the whole immune system. We also saw that the substance only has an effect when NFAT is active. The plaque formation was only stopped in diabetic mice and not in nondiabetic mice, which had normal blood sugar levels”, said lead author Anna Zetterqvist, MSc. “It appears that there are different mechanisms behind plaque formation caused by diabetes and not caused by diabetes.”

A wealth of epidemiologic evidence demonstrate that hyperglycemia promotes a widespread and aggressive form of atherosclerosis in the coronary arteries, lower extremities, and extracranial carotid arteries of diabetic patients, causing nearly 80% of all deaths and much of their disability. Both diabetes type 1 and type 2 are independent risk factors for myocardial infarction (MI), peripheral vascular disease (PVD), and stroke. In addition, recent studies also show a causal association between elevated glucose levels and increased carotid intima-media thickness, a marker of subclinical atherosclerosis.

Related Links:
Lund University



WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Electron micrograph of Hepatitis C virus purified from cell culture. Scale bar is 50 nanometers (Photo courtesy of the Center for the Study of Hepatitis C, the Rockefeller University).

Oxidized LDL Predicts Response to Interferon Treatment of Chronic Hepatitis C and May Be a Treatment Option

Oxidized low-density lipoprotein (oxLDL) in the blood was shown to predict responsiveness to interferon treatment in patients with chronic Hepatitis C virus (HCV) infection and to inhibit spread of the... Read more

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.