Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Protein Block Stops Vascular Damage in Diabetes

By BiotechDaily International staff writers
Posted on 24 Jun 2013
Print article
A new study demonstrates that the inhibition of a protein activated when blood sugar is raised suppresses accelerated atherosclerosis in diabetic mice.

Researchers at Lund University (Sweden) conducted a study in Streptozotocin (STZ)-induced diabetic in mice to investigate whether Nuclear Factor of Activated T-Cells (NFAT) activation may be a link between diabetes and atherogenesis, by measuring blood monocytes, endothelial activation, and inflammatory markers in the aorta, and proinflammatory cytokines in plasma. The study was initiated following previous studies that showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin.

The study showed that NFAT activation resulted in 2.2 fold increase in aortic atherosclerosis and enhanced proinflammatory burden. Subsequent in vivo treatment with the NFAT blocker A-285222 for four weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, while having no effect in nondiabetic mice. The STZ-treated mice also exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. In fact, the substance did not affect NFAT in any other cells or organs, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. The study was published in the June 3, 2013, issue of PLOS one.

“That is important. We don’t want to suppress the whole immune system. We also saw that the substance only has an effect when NFAT is active. The plaque formation was only stopped in diabetic mice and not in nondiabetic mice, which had normal blood sugar levels”, said lead author Anna Zetterqvist, MSc. “It appears that there are different mechanisms behind plaque formation caused by diabetes and not caused by diabetes.”

A wealth of epidemiologic evidence demonstrate that hyperglycemia promotes a widespread and aggressive form of atherosclerosis in the coronary arteries, lower extremities, and extracranial carotid arteries of diabetic patients, causing nearly 80% of all deaths and much of their disability. Both diabetes type 1 and type 2 are independent risk factors for myocardial infarction (MI), peripheral vascular disease (PVD), and stroke. In addition, recent studies also show a causal association between elevated glucose levels and increased carotid intima-media thickness, a marker of subclinical atherosclerosis.

Related Links:
Lund University



Print article

Channels

Genomics/Proteomics

view channel

Cardiac Researchers Use Stem Cells to Generate Functional Heart Muscle

Stem cell researchers have developed a new technique to form micro-scale arrays of engineered heart muscle (EHM) from fewer than 10,000 starter cells without requirement for adherence features or extracellular matrix (ECM). Tissue engineering approaches have the potential to increase the physiologic relevance of cells,... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.