Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Transcription Factor Found to Be Master Regulator in Cancer Metastasis

By BiotechDaily International staff writers
Posted on 20 Jun 2013
Print article
Image: Mammary epithelial cells that have undergone an epithelial-mesenchymal transition (EMT) exhibit a change in cell morphology with actin stress fibers (red) and with focused cell adhesion points (green) (Photo courtesy of Dr. Nathalie Meyer-Schaller, University of Basel).
Image: Mammary epithelial cells that have undergone an epithelial-mesenchymal transition (EMT) exhibit a change in cell morphology with actin stress fibers (red) and with focused cell adhesion points (green) (Photo courtesy of Dr. Nathalie Meyer-Schaller, University of Basel).
Image: In mammary epithelial cells in which the Sox4 transcription factor is missing this change is not apparent, and cancer cells cannot metastasize (Photo courtesy of Dr. Nathalie Meyer-Schaller, University of Basel).
Image: In mammary epithelial cells in which the Sox4 transcription factor is missing this change is not apparent, and cancer cells cannot metastasize (Photo courtesy of Dr. Nathalie Meyer-Schaller, University of Basel).
In the process of metastasis, the movement of cancer cells to diverse regions of the body, a specific master regulator gene plays a key role: a transcription factor called Sox4 triggers a sequence of genes and triggers the process. Sox4 suppression and subsequent processes may, according to Swiss researchers, prevent metastasis in cancer patients.

This new discovery was made by scientists from the University of Basel (Switzerland) and the Friedrich Miescher Institute for Biomedical Research (Basel, Switzerland). Their findings were published June 10, 2013, in the journal Cancer Cell.

The leading cause of death in cancer patients is metastasis, the formation of secondary tumors in other organs such as the lung, brain, and liver. Cancer cells detach from the original primary tumor and reach one cell or group of cells in another organ. The cells of the body typically stay in place by adhering to an extracellular material. However, cancer cells learn how to release themselves from these bonds and invade surrounding tissues, blood, and the lymphatic system.

The transformation of specialized, sedentary cells into drifting, invasive, and unspecialized cells is called epithelial-mesenchymal transition (EMT), which is essential for metastasis to occur. EMT is a multistage process, which is accompanied by a fundamental change in cell morphology and number of genetic programs. The molecular processes that control EMT, however, are still not well understood.

The research groups of Prof. Gerhard Christofori of the department of biomedicine at the University of Basel; Prof. Erik van Nimwegen from the Biozentrum, University of Basel; and Prof. Dirk Schuebeler from the Friedrich Miescher Institute have discovered a master regulator of metastasis and EMT: the transcription factor Sox4 is upregulated in its activity and triggers the expression of a number of genes that play an important role during EMT and metastasis.

Sox4 specifically encourages the expression of the enzyme Ezh2, a methyltransferase, which generally influences methylation of specific proteins (histones), the packaging of the genetic material, and thus its readability and gene expression. Because of this change in genetic information, the behavior and function of cells are reprogrammed—a mechanism that is observed during metastasis. Such an alteration in gene expression is also found in patients with malignant cancer and metastasis and correlates with a poor prognosis.

This new research points to the prospect that the suppression of the transcription factor Sox4 and especially the methyltransferase Ezh2 could inhibit metastasis in cancer patients. Appropriate pharmaceuticals are currently being developed but they still need to undergo clinical trials before being used in patients.

Related Links:
University of Basel
Friedrich Miescher Institute for Biomedical Research


Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.