Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Transcription Factor Found to Be Master Regulator in Cancer Metastasis

By BiotechDaily International staff writers
Posted on 20 Jun 2013
Image: Mammary epithelial cells that have undergone an epithelial-mesenchymal transition (EMT) exhibit a change in cell morphology with actin stress fibers (red) and with focused cell adhesion points (green) (Photo courtesy of Dr. Nathalie Meyer-Schaller, University of Basel).
Image: Mammary epithelial cells that have undergone an epithelial-mesenchymal transition (EMT) exhibit a change in cell morphology with actin stress fibers (red) and with focused cell adhesion points (green) (Photo courtesy of Dr. Nathalie Meyer-Schaller, University of Basel).
Image: In mammary epithelial cells in which the Sox4 transcription factor is missing this change is not apparent, and cancer cells cannot metastasize (Photo courtesy of Dr. Nathalie Meyer-Schaller, University of Basel).
Image: In mammary epithelial cells in which the Sox4 transcription factor is missing this change is not apparent, and cancer cells cannot metastasize (Photo courtesy of Dr. Nathalie Meyer-Schaller, University of Basel).
In the process of metastasis, the movement of cancer cells to diverse regions of the body, a specific master regulator gene plays a key role: a transcription factor called Sox4 triggers a sequence of genes and triggers the process. Sox4 suppression and subsequent processes may, according to Swiss researchers, prevent metastasis in cancer patients.

This new discovery was made by scientists from the University of Basel (Switzerland) and the Friedrich Miescher Institute for Biomedical Research (Basel, Switzerland). Their findings were published June 10, 2013, in the journal Cancer Cell.

The leading cause of death in cancer patients is metastasis, the formation of secondary tumors in other organs such as the lung, brain, and liver. Cancer cells detach from the original primary tumor and reach one cell or group of cells in another organ. The cells of the body typically stay in place by adhering to an extracellular material. However, cancer cells learn how to release themselves from these bonds and invade surrounding tissues, blood, and the lymphatic system.

The transformation of specialized, sedentary cells into drifting, invasive, and unspecialized cells is called epithelial-mesenchymal transition (EMT), which is essential for metastasis to occur. EMT is a multistage process, which is accompanied by a fundamental change in cell morphology and number of genetic programs. The molecular processes that control EMT, however, are still not well understood.

The research groups of Prof. Gerhard Christofori of the department of biomedicine at the University of Basel; Prof. Erik van Nimwegen from the Biozentrum, University of Basel; and Prof. Dirk Schuebeler from the Friedrich Miescher Institute have discovered a master regulator of metastasis and EMT: the transcription factor Sox4 is upregulated in its activity and triggers the expression of a number of genes that play an important role during EMT and metastasis.

Sox4 specifically encourages the expression of the enzyme Ezh2, a methyltransferase, which generally influences methylation of specific proteins (histones), the packaging of the genetic material, and thus its readability and gene expression. Because of this change in genetic information, the behavior and function of cells are reprogrammed—a mechanism that is observed during metastasis. Such an alteration in gene expression is also found in patients with malignant cancer and metastasis and correlates with a poor prognosis.

This new research points to the prospect that the suppression of the transcription factor Sox4 and especially the methyltransferase Ezh2 could inhibit metastasis in cancer patients. Appropriate pharmaceuticals are currently being developed but they still need to undergo clinical trials before being used in patients.

Related Links:
University of Basel
Friedrich Miescher Institute for Biomedical Research


Channels

Genomics/Proteomics

view channel
Image: Pluristem technicians produce PLacental eXpanded (PLX) cells in the company\'s state-of-the-art facility (Photo courtesy of Pluristem Therapeutics).

Placental Cells Secrete Factors That Protect Nerves from Ischemic Damage

Cells derived from placenta have been found to protect PC12 cells—rat-derived cells that behave similarly to and are used as stand-ins to study human nerve cells—in a culture-based ischemic stroke model.... Read more

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.