Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Drug Developers Researching Messenger RNA Replacement Therapies

By BiotechDaily International staff writers
Posted on 18 Apr 2013
Drug developers are showing increased interest in the use of messenger RNA (mRNA) as an alternate to gene replacement therapy.

A review in the April 2, 2013, online edition of the journal MIT Technology Review highlighted several companies planning or initiating research projects on the pharmaceutical applications of mRNA.

These molecules are attractive, as an mRNA would supply the biological instructions for producing a protein inside cells, perhaps a protein that replaces a missing or broken version inherited as part of a genetic disorder. This would be more efficient than DNA-based gene therapy (which would require the cells to make their own mRNA intermediary before producing a protein) and more effective than recombinant protein therapy. Proteins made from an injected mRNA would be less likely to induce an immune response than if the proteins were made in bacteria or yeast. Furthermore, more active drug would be available, as large scale in vitro manufacture of some proteins is not possible.

Obstacles that might hinder development of mRNA-based therapeutics include the fragility of these molecules and their tendency to generate a powerful immune response. However, companies beginning work in this field are confident they can overcome these difficulties. For example, Moderna Therapeutics (Cambridge, MA, USA) has modified mRNA by replacing nucleotides, so that the immune system no longer recognizes the molecule as dangerous. Their success so far has convinced the major pharmaceutical company AstraZeneca (London, United Kingdom) to pay USD 240 million for rights to the startup’s mRNA technology, which it hopes to use to develop treatments for cardiovascular, metabolic, and cancer patients.

Nucleotide substitutions seem to correct the problem of mRNA fragility. “Everybody considers mRNA to be the most unstable molecule you can think of,” said Dr. Christian Plank, CSO of Ethris (Martinsried, Germany), a company also developing modified mRNAs as drugs. “This opinion is still in the minds of most people and is a major reason why only a few people have thought of using it.” Fortunately, mRNA made with nucleotide analogs are more stable, and have been shown to last for up to 72 hours in the body, which is longer than for some protein therapies.

Molecules of mRNA cannot integrate into the genome and so do not present the same risk of disrupting the genome that DNA-based gene therapies do. “In general, gene therapy is a good approach, and in recent years there have been good breakthroughs, but for non-life-threatening disease, you want to avoid any potential risk you can think of, and integration into the genome is a known risk,” said Dr. Plank.

Ethris recently announced a collaborative agreement with the pharmaceutical company Shire (Dublin, Eire) to develop treatments for patients with rare diseases based on its technology.

Related Links:
Moderna Therapeutics
AstraZeneca
Ethris



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.