Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
BioConferenceLive
JIB

Researchers Develop New Tool That Reads Live Brain Activity

By BiotechDaily International staff writers
Posted on 06 Mar 2013
Scientists have developed a system for observing real-time mammalian brain activity, providing a valuable new tool for studying basic brain processes and neurological medical problems and treatments, including neurodegenerative diseases such as Alzheimer's.

Using a green fluorescent protein (GFP) expression marker and a microscope implanted in the brain, scientists at Standford University (Standford, CA, USA) have demonstrated a technique for observing in real-time the activity of hundreds of neurons in the brain of a live mouse. The researchers caused the neurons to express GFP from a vector engineered to be sensitive to calcium ions, which enter and flood neuron cells upon firing (activation) - the intracellular rise in calcium thereby causes the entire cell fluoresces. A tiny microscope implanted just above the hippocampus (critical for spatial and episodic memory) captures the light from roughly 700 neurons. A camera chip connected to the microscope sends a digital image to a computer screen, enabling the near real-time video observation of brain activity as the mouse runs around a small, enclosed “arena.” The scientists have deciphered clear patterns of neuron firings from what to others may appear to be a chaos of random firings.

"We can literally figure out where the mouse is in the arena by looking at these lights," said senior auther Mark Schnitzer, associate professor of biology and of applied physics at Stanford. When a mouse is scratching at the wall in one area of the arena, a specific neuron will fire and flash green. When the mouse scampers to a different area, the fluorescence from the first neuron fades while a different cell sparks. "The hippocampus is very sensitive to where the animal is in its environment, and different cells respond to different parts of the arena," said Prof. Schnitzer; "This is how your brain makes a representative map of a space."

The brain activity observed in this initial application of the technique has also been linked to long-term information storage. The team found that the neurons fired in the same patterns even after a month. "The ability to come back and observe the same cells is very important for studying progressive brain diseases," said Prof. Schnitzer. For example, if a particular neuron in a test mouse stops functioning, as a result of normal neuronal death or of a neurodegenerative disease, researchers could apply an experimental therapeutic agent and then expose the mouse to the same stimuli to see if the function returns. Although the technology cannot be used on humans, since mouse models are a common starting point for new therapies for human neurodegenerative diseases, Prof. Schnitzer notes that the system could be a very useful tool in evaluating preclinical research (the researchers have formed a company to manufacture the device).

The work was published February 10, 2013, in the online edition of the journal Nature Neuroscience.

Related Links:

Standford University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.