Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Newly Developed Compound Protects Heart Cells During and After Infarction

By BiotechDaily International staff writers
Posted on 18 Feb 2013
Using two recently developed diverse compounds, scientists have been able to show in animal models that suppressing a specific enzyme protects heart cells and neighboring tissue against the debilitating injury incurred by heart attacks. The compounds also protect against additional damage from restored blood flow after an attack, a process known as reperfusion.

The study, which was led by Dr. Philip LoGrasso, a professor and senior scientific director of discovery biology at the Florida campus of The Scripps Research Institute (TSRI; Jupiter, USA), was published in the February 8, 2013, print edition of the Journal of Biological Chemistry.

A myocardial infarction greatly restricts blood supply, starving heart cells and neighboring tissue of oxygen, which can cause enormous damage in comparatively little time—at times in just a few minutes. This decrease in oxygen, known as an ischemic cascade, results in a sudden crush of metabolic waste that damages cell membranes as well as the mitochondria.

Restoring blood flow adds considerably to the damage, unfortunately, a serious medical issue when it comes to treating major ischemic events such as stroke and heart attack. Reperfusion triggers generation of free radicals and reactive oxygen species that attack and damage cells, intensifying inflammation, signaling white blood cells to attack otherwise salvageable cells and maybe even stimulating potentially lethal cardiac arrhythmias.

The new study revealed that inhibiting the enzyme, c-jun-N-terminal kinase (JNK; pronounced junk), protected against ischemic/reperfusion injury in lab rodents, reducing the total volume of tissue death by as much as 34%. It also substantially decreased levels of reactive oxygen species and mitochondrial dysfunction.

In earlier studies, TSRI scientists discovered that JNK migrates to the mitochondria upon oxidative stress. That migration, combined with JNK activation, they found, is associated with a number of severe health issues, including liver damage, neuronal cell death, stroke, and heart attack. The peptide and small molecule inhibitor (SR3306), developed by Dr. LoGrasso and his colleagues, blocks those harmful effects, thereby reducing programmed cell death four-fold.

“This is the same story,” said Dr. LoGrasso. “These just happen to be heart cells, but we know that oxidative stress kills cells, and JNK inhibition protects against this stress. Blocking the translocation of JNK to the mitochondria is essential for stopping this killing cascade and may be an effective treatment for damage done to heart cells during an ischemic/reperfusion event.”

Moreover, according to Dr. LoGrasso, biomarkers that intensify during a heart attack decrease in the presence of JNK inhibition, a distinct indication that blocking JNK reduces the severity of the infarction.

Related Links:

The Scripps Research Institute




comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.