Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
PZ HTL SA

Newly Developed Compound Protects Heart Cells During and After Infarction

By BiotechDaily International staff writers
Posted on 18 Feb 2013
Using two recently developed diverse compounds, scientists have been able to show in animal models that suppressing a specific enzyme protects heart cells and neighboring tissue against the debilitating injury incurred by heart attacks. The compounds also protect against additional damage from restored blood flow after an attack, a process known as reperfusion.

The study, which was led by Dr. Philip LoGrasso, a professor and senior scientific director of discovery biology at the Florida campus of The Scripps Research Institute (TSRI; Jupiter, USA), was published in the February 8, 2013, print edition of the Journal of Biological Chemistry.

A myocardial infarction greatly restricts blood supply, starving heart cells and neighboring tissue of oxygen, which can cause enormous damage in comparatively little time—at times in just a few minutes. This decrease in oxygen, known as an ischemic cascade, results in a sudden crush of metabolic waste that damages cell membranes as well as the mitochondria.

Restoring blood flow adds considerably to the damage, unfortunately, a serious medical issue when it comes to treating major ischemic events such as stroke and heart attack. Reperfusion triggers generation of free radicals and reactive oxygen species that attack and damage cells, intensifying inflammation, signaling white blood cells to attack otherwise salvageable cells and maybe even stimulating potentially lethal cardiac arrhythmias.

The new study revealed that inhibiting the enzyme, c-jun-N-terminal kinase (JNK; pronounced junk), protected against ischemic/reperfusion injury in lab rodents, reducing the total volume of tissue death by as much as 34%. It also substantially decreased levels of reactive oxygen species and mitochondrial dysfunction.

In earlier studies, TSRI scientists discovered that JNK migrates to the mitochondria upon oxidative stress. That migration, combined with JNK activation, they found, is associated with a number of severe health issues, including liver damage, neuronal cell death, stroke, and heart attack. The peptide and small molecule inhibitor (SR3306), developed by Dr. LoGrasso and his colleagues, blocks those harmful effects, thereby reducing programmed cell death four-fold.

“This is the same story,” said Dr. LoGrasso. “These just happen to be heart cells, but we know that oxidative stress kills cells, and JNK inhibition protects against this stress. Blocking the translocation of JNK to the mitochondria is essential for stopping this killing cascade and may be an effective treatment for damage done to heart cells during an ischemic/reperfusion event.”

Moreover, according to Dr. LoGrasso, biomarkers that intensify during a heart attack decrease in the presence of JNK inhibition, a distinct indication that blocking JNK reduces the severity of the infarction.

Related Links:

The Scripps Research Institute




Channels

Genomics/Proteomics

view channel
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).

Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.... Read more

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.