Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

New Strategy Could Thwart Periodontal Disease Progress

By BiotechDaily International staff writers
Posted on 02 Jan 2013
Print article
A new study suggests that blocking a specific molecular receptor on white blood cells (WBCs) could prevent periodontitis from developing, as well as halting the progression of the disease once it has already developed.

Researchers at the University of Pennsylvania (Penn, Philadelphia, USA) showed (in a mouse model) that Porphyromonas gingivalis--the bacterium responsible for many cases of periodontitis--acts by “hijacking” a receptor on WBCs called C5aR, which is part of the complement system, a component of the immune system that helps clear infection but can trigger damaging inflammation if improperly controlled. By hijacking C5aR, P. gingivalis subverts the complement system and handicaps immune cells, rendering them less able to clear infection from the gum tissue, resulting in severe inflammation.

Other studies have shown that toll-like receptors (TLRs, a set of proteins that also activate immune cell responses) may also act in concert with the complement system; in fact, mice that are C5aR-deficient and those lacking TLR2 do not develop bone loss. The researchers therefore tried to determine if the synergism seen between the complement system and TLRs was also at play in inflammatory gum disease. To find out, they injected two types of molecules, one that activated C5aR and another that activated TLR2, into the gums of mice. When only one type of molecule was administered, a moderate inflammatory response became apparent, but when injected together, inflammatory molecules increased dramatically.

In fact, the inflammatory molecules soared to levels higher than would have been expected if the effect of activating both receptors was merely additive. The finding suggested to the scientists that the TLR signaling was somehow involved in "crosstalk" with the complement system, serving to augment the inflammatory response. They then surmised that blocking one of the receptors could effectively halt the inflammation that allows P. gingivalis and other bacteria to thrive and cause disease.

To test the hypothesis, the researchers synthesized and administered a molecule that blocks the activity of C5aR to mice that were then infected with P. gingivalis. Subsequent C5aR antagonist injections were able to stave off inflammation to a large extent, reducing inflammatory molecules by 80% and completely stopping bone loss. Similar effects were seen when the mice were given the antagonist two weeks after being infected, reducing signs of inflammation by 70% and inhibiting nearly 70% of periodontal bone loss. The study was published in the Journal of Immunology.

“Regardless of whether we administered the C5a receptor antagonist before the development of the disease or after it was already in progress, our results showed that we could inhibit the disease either in a preventive or a therapeutic mode,” said senior author Professor George Hajishengallis, DDS, PhD.

Related Links:

University of Pennsylvania




Print article

Channels

Drug Discovery

view channel
Image: A scanning electron microscope (SEM) image of methicillin-resistant Staphylococcus aureus bacteria (Photo courtesy of the CDC).

Drug Combination Cures MRSA Infection While Preventing Development of Resistance

Treatment with a combination comprising the well-known antibiotic cefdinir and the experimental drug TXA709 cured mice of drug-resistant staphylococcal infections while reducing the development of resistance.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A three-dimensional printer adapted for stem cell production (Photo courtesy of Nano Dimension).

Israeli Developers Demonstrate Prototype Three-Dimensional Bioprinter

Two Israeli companies have combined efforts in the development of three-dimensional printer technology for the production of stem cells. The three-dimensional print electronics developer Nano Dimension... Read more

Business

view channel

Acquisition to Boost Development of Drugs for Neurogenic Conditions

According to a recent announcement, a privately held biotechnology/drug development company is to be acquired by one of the major pharmaceutical manufacturers. The drug manufacturer Merck & Co. (Kenilworth, NJ, USA) has agreed to pay 500 million USD up front for Afferent Pharmaceuticals (San Mateo, CA, USA) and up... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.