Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Leukemia Patients Receiving Engineered T-Cell Therapy Remain in Remission

By BiotechDaily International staff writers
Posted on 18 Dec 2012
Researchers report on the first successful and sustained demonstration of clinical use of gene transfer therapy with human T-cells programmed to specifically target cancerous tumors. The results may lead to a shift in the treatment approach for patients with Leukemia or similar types of blood cancers, which in advanced stages currently have the possibility of cure only with bone marrow transplants.

Nine of 12 leukemia patients initially responded to the therapy pioneered by scientists at the Perelman School of Medicine at the University of Pennsylvania (Philadelphia, PA, USA). Clinical trial participants, all of whom had advanced cancers, included 10 adult patients with chronic lymphocytic leukemia and two children with acute lymphoblastic leukemia. Two of the first 3 patients treated with the protocol, whose cases were published in August 2011, remain healthy and in full remission more than two years after treatment, with the engineered cells still circulating in their bodies. The researchers have now presented the latest results of the trial at the 2012 American Society of Hematology’s Annual Meeting and Exposition.

“Our results show that chimeric antigen receptor modified T-cells have great promise to improve the treatment of leukemia and lymphoma [and in the future] may reduce or replace the need for bone marrow transplantation,” said trial leader Carl June, MD, the Richard W. Vague professor in Immunotherapy. However, the procedure requires a lengthy hospitalization and carries at least a 20% mortality risk, and even then offers only a limited chance of cure for patients whose disease has not responded to other treatments.

The protocol for the new treatment involves removing patients' cells through an apheresis process similar to blood donation. The T-cells are then programmed using an HIV-derived Lentivirus vector with a gene encoding an antibody-like protein, a chimeric antigen receptor (CAR), expressed on the cell surface, and designed to bind the protein CD19. The modified cells are then infused back into the patient following lymphodepleting chemotherapy. The CAR expressing T- cells specifically focus on attacking cells that express CD19, which includes CLL and ALL tumor cells, and normal B cells. The high specificity limits systemic side effects typically experienced during traditional therapies. In addition, a signaling molecule built into the CAR initiates production of cytokines that trigger T-cell proliferation and so provide additional T-cells that target additional tumor cells.

In the patients who experienced complete remissions after treatment, the CAR T-cells exhibited vigorous proliferation after infusion, with the most robust expansion activity usually occurring 10-31 days after infusion. Each of these patients developed a cytokine release syndrome marked by fever, nausea, hypoxia, and low blood pressure, which doctors treated when needed with the anticytokine agent tocilizumab. Ultimately, the treatment eradicated large amounts of tumor in these patients. Tests of patients with complete responses showed that normal B-cells have also been eliminated; these patients are receiving regular gamma globulin treatments as a preventive measure. No unusual infections have been observed.

Related Links:
Perelman School of Medicine at the University of Pennsylvania
Leukemia T-cell therapy clinical trial



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.