Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Micromedic Technologies

Infrared Light Causes Organic Nanoparticles to Heat Up and Cook Cancer Cells

By BiotechDaily International staff writers
Posted on 06 Dec 2012
Print article
Novel organic nanoparticles that generate heat when exposed to infrared light effectively killed colorectal cancer cells in a cell-culture model system.

Investigators at Wake Forest Baptist Medical Center (Winston-Salem, NC, USA) developed conjugated polymer nanoparticles (PNs) consisting of 2-ethylhexyl cyclopentadithiophene copolymerized with 2,1,3-benzothiadiazole (for nano-PCPDTBT) or 2,1,3-benzoselenadiazole (for nano-PCPDTBSe). The PNs were stable in aqueous media and showed no significant toxicity up to one mg/mL. Upon exposure to infrared light at 808 nm, the PNs generated temperatures above 50 degrees Celsius.

Experiments were carried out to test the effect of the PNs on cultures of RKO and HCT116 colorectal cancer cells.

Results published in the October 5, 2012, online edition of the journal Macromolecular Bioscience revealed that exposure to infrared light for five minutes killed more than 80% of the cells at nano-PCPDTBSe concentrations above 100 micrograms/mL, while at concentrations above 62 micrograms/mL for nano-PCPDTBT, more than 90% of cells were killed.

“The results of this study demonstrate how new medical advancements are being developed from materials science research,” said senior author Dr. Nicole H. Levi-Polyachenko, assistant professor of plastic and reconstructive surgery at Wake Forest Baptist Medical Center. “There is a lot more research that needs to be done so that these new nanoparticles can be used safely in patients, but the field of electrically-conductive polymers is broad and offers many opportunities to develop safe, organic nanoparticles for generating heat locally in a tissue. We are very enthusiastic about future medical applications using these new nanoparticles, including an alternative approach for treating colorectal cancer.”

Related Links:
Wake Forest Baptist Medical Center


Print article

Channels

Genomics/Proteomics

view channel
Image: Molecular model of E3 ubiquitin ligase (green), E2 ubiquitin enzyme (orange), \"activated ubiquitin\" (cyan), and \"allosteric ubiquitin\" (blue) (Photo courtesy of Dr. Bernhard Lechtenberg, Sanford Burnham Prebys Medical Discovery Institute).

Researchers Resolve Molecular Structure of Critical Ubiquitin-Binding Enzyme

The molecular structure of a protein complex critically involved in diverse cellular functions such as cell signaling, DNA repair, and mounting anti-inflammatory and immune responses has been elucidated... Read more

Drug Discovery

view channel
Image: The “cellXpress” automated imaging analysis software enables to efficiently and accurately detect cellular responses (reflected in green) to nephrotoxic compounds (Photo courtesy of Agency for Science, Technology and Research (Singapore)).

First High-Throughput Imaging Platform for Predicting Kidney Toxicity of Chemicals

Researchers have developed a high-throughput platform of automated cellular imaging that efficiently and accurately predicts renal toxicity of chemical compounds without animal testing, providing an improved... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.