Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
BioConferenceLive

Infrared Light Causes Organic Nanoparticles to Heat Up and Cook Cancer Cells

By BiotechDaily International staff writers
Posted on 06 Dec 2012
Novel organic nanoparticles that generate heat when exposed to infrared light effectively killed colorectal cancer cells in a cell-culture model system.

Investigators at Wake Forest Baptist Medical Center (Winston-Salem, NC, USA) developed conjugated polymer nanoparticles (PNs) consisting of 2-ethylhexyl cyclopentadithiophene copolymerized with 2,1,3-benzothiadiazole (for nano-PCPDTBT) or 2,1,3-benzoselenadiazole (for nano-PCPDTBSe). The PNs were stable in aqueous media and showed no significant toxicity up to one mg/mL. Upon exposure to infrared light at 808 nm, the PNs generated temperatures above 50 degrees Celsius.

Experiments were carried out to test the effect of the PNs on cultures of RKO and HCT116 colorectal cancer cells.

Results published in the October 5, 2012, online edition of the journal Macromolecular Bioscience revealed that exposure to infrared light for five minutes killed more than 80% of the cells at nano-PCPDTBSe concentrations above 100 micrograms/mL, while at concentrations above 62 micrograms/mL for nano-PCPDTBT, more than 90% of cells were killed.

“The results of this study demonstrate how new medical advancements are being developed from materials science research,” said senior author Dr. Nicole H. Levi-Polyachenko, assistant professor of plastic and reconstructive surgery at Wake Forest Baptist Medical Center. “There is a lot more research that needs to be done so that these new nanoparticles can be used safely in patients, but the field of electrically-conductive polymers is broad and offers many opportunities to develop safe, organic nanoparticles for generating heat locally in a tissue. We are very enthusiastic about future medical applications using these new nanoparticles, including an alternative approach for treating colorectal cancer.”

Related Links:
Wake Forest Baptist Medical Center


comments powered by Disqus

Channels

Genomics/Proteomics

view channel

Molecular Pathway Decreases Cell Adhesion and Initiates Metastasis

A recent paper outlined a molecular pathway that enables lung cancer cells to migrate away from the site of the primary tumor and become established in other parts of the body. Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) linked a virtual alphabet soup of genes and their protein products... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.