Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Prospective Antidementia Drug Improves Brain Function

By BiotechDaily International staff writers
Posted on 15 Oct 2012
A new antidementia drug candidate has been found to be highly active in creating new neuronal connections and improving the cognitive function of rats with Alzheimer’s-like mental impairment.

Researchers at Washington State University (WSU; Pullman, WA, USA) have developed a new compound, named Dihexa, designed to repair damage that has already occurred and thereby recover lost brain function. This is a significant departure from current treatments for diseases such as Alzheimer’s, treatments that only slow the process of cell death or inhibit the neurotransmitter cholinesterase. Also, the Pharmaceutical Research and Manufacturers of America (PhRMA) reported that only 3 of 104 possible treatments have been approved in the past 13 years, a 34 to 1 ratio of setbacks to successes.

Joe Harding, professor at the WSU College of Veterinary Medicine, Jay Wright, professor at the WSU College of Arts and Sciences, and other WSU colleagues, reported their findings on October 10, 2012, in the early online section of the Journal of Pharmacology and Experimental Therapeutics. Prof. Harding designed a smaller version of the peptide angiotensin IV. Unlike the original peptide and early candidate molecules based on it, the new analog, Dihexa, was found to be both stable and able to cross the blood-brain barrier. It can also move from the gut into the blood and so could be taken orally in pill form.

The WSU team tested Dihexa on several dozen rats treated with scopolamine. Typically, a rat treated with scopolamine will not learn the location of a submerged platform in a water tank, orienting with cues outside the tank. After receiving Dihexa, all rats learned the task whether receiving the drug orally, by injection, or directly into the brain. Similar results were observed where a smaller group of old rats performed like young rats after treatment; however, while these results were statistically valid, studies with larger test groups will be needed to check the finding.

The "gold standard” compound for creating neuronal connections is brain-derived neurotrophic factor (BDNF). In bench assays using living nerve cells to monitor new neuronal connections, Dihexa was seven orders of magnitude more powerful than BDNF, which itself has yet to be effectively developed for therapeutic use. "We quickly found out that this molecule was [very highly] active,” said Prof. Harding. These results further suggest that Dihexa or molecules like it may also have applications for other neurodegenerative diseases or brain traumas where neuronal connections are lost. Development of Dihexa for human use will begin after safety testing and US Food and Drug Administration approval is obtained for clinical trials.

Related Links:

Washington State University




comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.