Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

Future Chemotherapy Could Target Tumor Cell Social Interactions

By BiotechDaily International staff writers
Posted on 11 Oct 2012
Collections of cancer cells - tumors- display many characteristics of communal communication and social interaction that typify collections of bacterial cells, and an international team of theoretical biologists have suggested that development of new cancer treatments should be based on attacking tumors at the level of these social interactions.

Investigators at Rice University (Houston, TX, USA), Johns Hopkins University (Baltimore, MD, USA), and Tel Aviv University (Israel) suggested in a paper published in the September 2012 issue of the journal Trends in Microbiology that the communal behavior of bacteria represent a valuable model system for new perspectives and research directions in cancer chemotherapy. As an example they site the behavior of some types of cancer that revert to a dormant, unresponsive state when challenged by drug treatment. Absence of the drug stimulates a signaling process that reawakens the tumor.

“Cancer is a sophisticated enemy. There is growing evidence that cancer cells use advanced communications to work together to enslave normal cells, create metastases, resist drugs, and decoy the body’s immune system,” said first author Dr. Eshel Ben-Jacob, professor of physics at Tel Aviv University. “If we can break the communication code, we may be able to prevent the cells from going dormant or to reawaken them for a well-timed chemotherapeutic attack. This is just one example. Our extensive studies of the social lives of bacteria suggest a number of others, including sending signals that trigger the cancer cells to turn upon themselves and kill one another.”

Related Links:

Rice University
Johns Hopkins University
Tel Aviv University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: In the liver tissue of obese animals with type II diabetes, unhealthy, fat-filled cells are prolific (small white cells, panel A). After chronic treatment through FGF1 injections, the liver cells successfully lose fat and absorb sugar from the bloodstream (small purple cells, panel B) and more closely resemble cells of normal, non-diabetic animals (Photo courtesy of the Salk Institute for Biological Studies).

Fibroblast Growth Factor 1 Treatment Restores Glucose Control in Mouse Diabetes Model

A "vaccine" based on the metabolic regulator fibroblast growth factor 1 (FGF1) removed the insulin resistance that characterizes type II diabetes and restored the body's natural ability to manage its glucose... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel

Precise Ion Irradiation Dosing Method Developed for Cancer Therapy

Scientists are employing nuclear physics principles to provide more effective approaches to radiotherapy treatment for cancer patients. Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. These particles scarcely damage the penetrated... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.