Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Future Chemotherapy Could Target Tumor Cell Social Interactions

By BiotechDaily International staff writers
Posted on 11 Oct 2012
Collections of cancer cells - tumors- display many characteristics of communal communication and social interaction that typify collections of bacterial cells, and an international team of theoretical biologists have suggested that development of new cancer treatments should be based on attacking tumors at the level of these social interactions.

Investigators at Rice University (Houston, TX, USA), Johns Hopkins University (Baltimore, MD, USA), and Tel Aviv University (Israel) suggested in a paper published in the September 2012 issue of the journal Trends in Microbiology that the communal behavior of bacteria represent a valuable model system for new perspectives and research directions in cancer chemotherapy. As an example they site the behavior of some types of cancer that revert to a dormant, unresponsive state when challenged by drug treatment. Absence of the drug stimulates a signaling process that reawakens the tumor.

“Cancer is a sophisticated enemy. There is growing evidence that cancer cells use advanced communications to work together to enslave normal cells, create metastases, resist drugs, and decoy the body’s immune system,” said first author Dr. Eshel Ben-Jacob, professor of physics at Tel Aviv University. “If we can break the communication code, we may be able to prevent the cells from going dormant or to reawaken them for a well-timed chemotherapeutic attack. This is just one example. Our extensive studies of the social lives of bacteria suggest a number of others, including sending signals that trigger the cancer cells to turn upon themselves and kill one another.”

Related Links:

Rice University
Johns Hopkins University
Tel Aviv University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Diagram illustrates the innovative process that could lead to more effective drugs against influenza infection (Photo courtesy of the Hebrew University of Jerusalem).

Researchers Show How the Influenza Virus Blocks Natural Killer Cell Recognition

A team of molecular virologists has described how the influenza virus evolved a defense mechanism to protect it from attack by the immune system's natural killer (NK) cells. The recognition of pathogen-infected... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Genome-Wide Mutation-Searching Computational Software Designed for Genomic Medicine

Analysis software cross-references a patient’s symptoms with his genome sequence to help physicians in the diagnosis of disease. This software was created by a team of scientists from A*STAR’s Genome Institute of Singapore (GIS), led by Dr. Pauline Ng. The research findings were published August 3, 2014, in the journal... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.