Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Future Chemotherapy Could Target Tumor Cell Social Interactions

By BiotechDaily International staff writers
Posted on 11 Oct 2012
Collections of cancer cells - tumors- display many characteristics of communal communication and social interaction that typify collections of bacterial cells, and an international team of theoretical biologists have suggested that development of new cancer treatments should be based on attacking tumors at the level of these social interactions.

Investigators at Rice University (Houston, TX, USA), Johns Hopkins University (Baltimore, MD, USA), and Tel Aviv University (Israel) suggested in a paper published in the September 2012 issue of the journal Trends in Microbiology that the communal behavior of bacteria represent a valuable model system for new perspectives and research directions in cancer chemotherapy. As an example they site the behavior of some types of cancer that revert to a dormant, unresponsive state when challenged by drug treatment. Absence of the drug stimulates a signaling process that reawakens the tumor.

“Cancer is a sophisticated enemy. There is growing evidence that cancer cells use advanced communications to work together to enslave normal cells, create metastases, resist drugs, and decoy the body’s immune system,” said first author Dr. Eshel Ben-Jacob, professor of physics at Tel Aviv University. “If we can break the communication code, we may be able to prevent the cells from going dormant or to reawaken them for a well-timed chemotherapeutic attack. This is just one example. Our extensive studies of the social lives of bacteria suggest a number of others, including sending signals that trigger the cancer cells to turn upon themselves and kill one another.”

Related Links:

Rice University
Johns Hopkins University
Tel Aviv University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.