Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Bioengineered Jellyfish Provides Insights into Next-Generation Heart Disease Treatments

By BiotechDaily International staff writers
Posted on 15 Aug 2012
Researchers have successfully tissue-engineered a jellyfish using a mix of silicone polymer and rat-heart cells. Scientists believe this discovery takes them a step closer to understanding how to reverse-engineer entire organs and finding novel treatments for patients with heart damage and failure.

The engineered, 1 cm-long jellyfish is comprised of a membrane with eight arm-like appendages. Within the membrane, rat heart-muscle cells were placed in a specific pattern to promote self-organization and accurately resemble the muscular architecture of a jellyfish. After placing the artificial jellyfish, named Medusoid, in a salty fluid capable of conducting electrical currents, researchers were able to trigger muscle contraction of the membrane by oscillating the voltage in the fluid. As a result of the muscular contractions, vortices (ring-shaped whirling masses of water) were created beneath the organism, allowing it to propel itself forward. This muscular-pump mechanism utilized by the jellyfish for locomotion is equivalent to that of the beating human heart.

Yearly, approximately one million people in the United States die of heart disease, accounting for 42% of the total number of deaths. The US cardiovascular devices market, a USD 15 billion industry forecasted to grow at a compound annual growth rate (CAGR) of 3.1%, represents 11% of the overall medical devices market. The market is driven by the aging population, the increased incidence rate of the disease and the scientific and technological advancements made in the field. These factors contribute to an unmet need in the market to find new and better treatments, according to healthcare market research company, GlobalData (London, UK).

The most common type of heart disease in the United States is coronary artery disease (CAD), characterized by an accumulation of plaque in the coronary arteries. Overtime, this leads to narrowing of the arteries and prevents adequate blood flow to the heart. The disorder can be diagnosed using tests such as an electrocardiogram (ECG), echocardiogram, cardiac catheterization, and coronary angiogram. Treatment for heart disease is tailored for each patient and can vary from drug therapy, monitoring and daily testing to surgical procedures and the implantation of biomedical devices such as stents and pacemakers to regulate cardiac activity.

These temporary treatment options consist of intervention via a substance or medical device. While biomedical devices and medical drugs are tested for safety and biocompatibility, long-term effects such as thrombosis and adverse reactions can occur. Moreover, biomedical devices that are implanted into the patient need to be replaced as they degrade overtime. Innovative solutions need to be designed to address these issues and improve the quality and delivery of healthcare. This study, conducted by investigators from Harvard University(Cambridge, MA, USA) and the California Institute of Technology (Caltech; Pasadena, CA, USA), presents a move in a different direction for scientists in the future to gather cells from one organism and redesign them to create tissue-engineered organs/systems such as heart pacemakers. The current US market for pacemakers is valued at USD 1.6 billion. A tissue-engineered and efficacious “biological heart pacemaker” that would be more biocompatible than a traditional pacemaker and would not require battery power could be beneficial, given the need to develop safe and effective treatments in this market, according to GlobalData.

While bioengineering organs and pacemakers are challenging from a development and regulatory standpoint, the immediate benefits include using the artificial jellyfish as a research model for preclinical testing of new medical heart disease drugs. Harvard’s Dr. Kevin Kit Parker said, “I could put your drug in the jellyfish and tell you if it’s going to work.”

The study findings also revealed that vortex formations generated by the engineered jellyfish are similar to the blood flow patterns entering the left ventricle of the heart. Studying the vortex patterns can provide more data about cardiac health and enable scientists to obtain a deeper understanding of the cardiovascular flow network and mechanisms.

Related Links:

Harvard University
California Institute of Technology
GlobalData



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.