Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

Bioengineered Jellyfish Provides Insights into Next-Generation Heart Disease Treatments

By BiotechDaily International staff writers
Posted on 15 Aug 2012
Researchers have successfully tissue-engineered a jellyfish using a mix of silicone polymer and rat-heart cells. Scientists believe this discovery takes them a step closer to understanding how to reverse-engineer entire organs and finding novel treatments for patients with heart damage and failure.

The engineered, 1 cm-long jellyfish is comprised of a membrane with eight arm-like appendages. Within the membrane, rat heart-muscle cells were placed in a specific pattern to promote self-organization and accurately resemble the muscular architecture of a jellyfish. After placing the artificial jellyfish, named Medusoid, in a salty fluid capable of conducting electrical currents, researchers were able to trigger muscle contraction of the membrane by oscillating the voltage in the fluid. As a result of the muscular contractions, vortices (ring-shaped whirling masses of water) were created beneath the organism, allowing it to propel itself forward. This muscular-pump mechanism utilized by the jellyfish for locomotion is equivalent to that of the beating human heart.

Yearly, approximately one million people in the United States die of heart disease, accounting for 42% of the total number of deaths. The US cardiovascular devices market, a USD 15 billion industry forecasted to grow at a compound annual growth rate (CAGR) of 3.1%, represents 11% of the overall medical devices market. The market is driven by the aging population, the increased incidence rate of the disease and the scientific and technological advancements made in the field. These factors contribute to an unmet need in the market to find new and better treatments, according to healthcare market research company, GlobalData (London, UK).

The most common type of heart disease in the United States is coronary artery disease (CAD), characterized by an accumulation of plaque in the coronary arteries. Overtime, this leads to narrowing of the arteries and prevents adequate blood flow to the heart. The disorder can be diagnosed using tests such as an electrocardiogram (ECG), echocardiogram, cardiac catheterization, and coronary angiogram. Treatment for heart disease is tailored for each patient and can vary from drug therapy, monitoring and daily testing to surgical procedures and the implantation of biomedical devices such as stents and pacemakers to regulate cardiac activity.

These temporary treatment options consist of intervention via a substance or medical device. While biomedical devices and medical drugs are tested for safety and biocompatibility, long-term effects such as thrombosis and adverse reactions can occur. Moreover, biomedical devices that are implanted into the patient need to be replaced as they degrade overtime. Innovative solutions need to be designed to address these issues and improve the quality and delivery of healthcare. This study, conducted by investigators from Harvard University(Cambridge, MA, USA) and the California Institute of Technology (Caltech; Pasadena, CA, USA), presents a move in a different direction for scientists in the future to gather cells from one organism and redesign them to create tissue-engineered organs/systems such as heart pacemakers. The current US market for pacemakers is valued at USD 1.6 billion. A tissue-engineered and efficacious “biological heart pacemaker” that would be more biocompatible than a traditional pacemaker and would not require battery power could be beneficial, given the need to develop safe and effective treatments in this market, according to GlobalData.

While bioengineering organs and pacemakers are challenging from a development and regulatory standpoint, the immediate benefits include using the artificial jellyfish as a research model for preclinical testing of new medical heart disease drugs. Harvard’s Dr. Kevin Kit Parker said, “I could put your drug in the jellyfish and tell you if it’s going to work.”

The study findings also revealed that vortex formations generated by the engineered jellyfish are similar to the blood flow patterns entering the left ventricle of the heart. Studying the vortex patterns can provide more data about cardiac health and enable scientists to obtain a deeper understanding of the cardiovascular flow network and mechanisms.

Related Links:

Harvard University
California Institute of Technology
GlobalData



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: In the liver tissue of obese animals with type II diabetes, unhealthy, fat-filled cells are prolific (small white cells, panel A). After chronic treatment through FGF1 injections, the liver cells successfully lose fat and absorb sugar from the bloodstream (small purple cells, panel B) and more closely resemble cells of normal, non-diabetic animals (Photo courtesy of the Salk Institute for Biological Studies).

Fibroblast Growth Factor 1 Treatment Restores Glucose Control in Mouse Diabetes Model

A "vaccine" based on the metabolic regulator fibroblast growth factor 1 (FGF1) removed the insulin resistance that characterizes type II diabetes and restored the body's natural ability to manage its glucose... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.