Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Reversing Loss of miR-122 Helps Treat Liver Cancer

By BiotechDaily International staff writers
Posted on 01 Aug 2012
A study revealed that loss of the miR-122 molecule in liver cells might cause liver cancer and that restoring the molecule might slow tumor growth.

Liver cancer is the third leading cancer killer worldwide and new treatments are greatly needed. The animal study was led by researchers at the Ohio State University (OSU) Comprehensive Cancer Center-Arthur G. James Cancer Hospital (Columbus, USA) and OSU’s Richard J. Solove Research Institute (OSUCCC-James). The scientists examined what occurs when liver cells lack a molecule called microRNA-122 (miR-122). They found that when the molecule is missing, the liver develops fat deposits, inflammation, and tumors that resemble hepatocellular carcinoma (HCC), the most common form of liver cancer.

When the researchers synthetically restored miR-122 to nearly normal levels by delivering the miR-122 gene into liver cells, it considerably reduced the size and number of tumors, with tumors making up 8% on average of liver surface area in treated animals versus 40% in control animals.

The study was published July 23, 2012, in the Journal of Clinical Investigation. “These findings reveal that miR-122 has a critical tumor-suppressor role in the healthy liver, and they highlight the possible therapeutic value of miR-122 replacement for some patients with liver cancer,” said study leader Dr. Kalpana Ghoshal, associate professor of pathology and a member of the OSUCCC-James Experimental Therapeutics Program.

MiR-122 is found principally in liver cells--it is the most plentiful microRNA in those cells--and it plays a major role in regulating cholesterol in the body. This microRNA is lost in some people with HCC, however, resulting in a poor prognosis.

For this study, Dr. Ghoshal and her colleagues developed a strain of mice that lacks miR-122 and develops HCC through the progression of events that begins with fatty liver deposits followed by inflammation and liver cancer. The researchers then used a second strain of mice that spontaneously develops liver cancer due to overexpression of a cancer-causing gene called MYC. The researchers delivered miR-122 into the animals’ livers during tumor development. Three weeks later, those treated with the molecule had smaller and fewer tumors. “The model we developed for these studies will not only facilitate our understanding of liver biology, but it will also be good for testing therapeutic efficacy of newly developed drugs against liver disease, including HCC,” Dr. Ghoshal stated.

Dr. Ghoshal also noted that research by other scientists has shown that Hepatitis C virus requires miR-122 for replication. “Because our findings demonstrate what happens when miR-122 is lost in liver cells, they might help improve the safety of new drugs that treat Hepatitis C virus infection by blocking miR-122,” she concluded.

Related Links:

Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital



RANDOX LABORATORIES
BIOSIGMA S.R.L.
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.