Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Bee Venom Compound Tested for Radioprotector Qualities

By BiotechDaily International staff writers
Posted on 23 Jul 2012
A team of Spanish researchers conducted in vitro studies of cytotoxicity to evaluate the optimal concentration level of propolis, in which this natural substance extracted from bee resin would offer the maximum protection against ionized radiation and not be toxic for blood cells.

According to the researchers, from the Technical University of Valencia, the University Hospital La Fe, the University of Valencia, and the Universitat Autonoma de Barcelona, this optimal concentration level is between 120-500 µg/mL. “Within this range can be found maximum protection against radiation-induced damage and the substance does not reveal either a cytotoxicity nor a genotoxicity effect on nonirradiated human lymphocytes,” said Dr. Alegria Montoro, head of the laboratory of biological dosimetry at the University Hospital La Fe.

The conclusions of this study represent a starting point for future clinical applications using propolis. The results were published February 2012 in the journal Food and Chemical Toxicology, and a full revision of the study will be presented at the annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC12, which will be held in San Diego (CA, USA), in August 2012.

In the study, the researchers utilized four genetic biomarkers, including the mytotic index and the cell proliferation kinetics, with the aim of determining whether propolis has cytotoxic effects on cells. “Using these biomarkers makes it possible to discover how a substance affects cell division: a substance which is cytotoxic and modifies the cell division stage would do so by accelerating, slowing down or even stopping the process, and all three effects are negative,” explained Dr. Alegria Montoro.

The other two biomarkers used are the study of the possible induction of chromosome changesin nonirradiated cultures at different concentration levels and sister chromatid exchanges (SCEs), a genetic biomarker of exposure to chemical agents.

“With this study we already know the in vitro experimental level, the concentration of propolis to be used to make it act as a radiation protector agent, without being cyto/genotoxic for normal cells. This is the first step, a starting point for future clinical assays. The final goal is to develop capsules containing the adequate doses of propolis, but many more hours of research are needed before we are able to do this,” Dr. Alegria Montoro added.

UAB lecturer Francesc Barquinero, currently on leave to work at the Institut de Radioprotection et de Sûreté Nucléaire (IRSN; Fontenay aux Roses, France), participated in the original planning of the study and its design, as well as the interpretation of the findings and posterior contextualization of other studies published.

In 2008, researchers at the Institute for Industrial, Radiophysical and Environmental Safety (ISIRyM) of the Technical University of Valencia and the University Hospital La Fe demonstrated that propolis can reduce by half the damage inflicted on chromosomes by ionized radiations, thereby protecting the DNA from these effects. The new study is essential, according to the investigators, in finding the range of concentrations in which this compound can have a toxic effect on nonirradiated cells.

Related Links:

Technical University of Valencia
University of Valencia
University Hospital La Fe



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Diagram illustrates the innovative process that could lead to more effective drugs against influenza infection (Photo courtesy of the Hebrew University of Jerusalem).

Researchers Show How the Influenza Virus Blocks Natural Killer Cell Recognition

A team of molecular virologists has described how the influenza virus evolved a defense mechanism to protect it from attack by the immune system's natural killer (NK) cells. The recognition of pathogen-infected... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Genome-Wide Mutation-Searching Computational Software Designed for Genomic Medicine

Analysis software cross-references a patient’s symptoms with his genome sequence to help physicians in the diagnosis of disease. This software was created by a team of scientists from A*STAR’s Genome Institute of Singapore (GIS), led by Dr. Pauline Ng. The research findings were published August 3, 2014, in the journal... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.