Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
PZ HTL SA

Bee Venom Compound Tested for Radioprotector Qualities

By BiotechDaily International staff writers
Posted on 23 Jul 2012
A team of Spanish researchers conducted in vitro studies of cytotoxicity to evaluate the optimal concentration level of propolis, in which this natural substance extracted from bee resin would offer the maximum protection against ionized radiation and not be toxic for blood cells.

According to the researchers, from the Technical University of Valencia, the University Hospital La Fe, the University of Valencia, and the Universitat Autonoma de Barcelona, this optimal concentration level is between 120-500 µg/mL. “Within this range can be found maximum protection against radiation-induced damage and the substance does not reveal either a cytotoxicity nor a genotoxicity effect on nonirradiated human lymphocytes,” said Dr. Alegria Montoro, head of the laboratory of biological dosimetry at the University Hospital La Fe.

The conclusions of this study represent a starting point for future clinical applications using propolis. The results were published February 2012 in the journal Food and Chemical Toxicology, and a full revision of the study will be presented at the annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC12, which will be held in San Diego (CA, USA), in August 2012.

In the study, the researchers utilized four genetic biomarkers, including the mytotic index and the cell proliferation kinetics, with the aim of determining whether propolis has cytotoxic effects on cells. “Using these biomarkers makes it possible to discover how a substance affects cell division: a substance which is cytotoxic and modifies the cell division stage would do so by accelerating, slowing down or even stopping the process, and all three effects are negative,” explained Dr. Alegria Montoro.

The other two biomarkers used are the study of the possible induction of chromosome changesin nonirradiated cultures at different concentration levels and sister chromatid exchanges (SCEs), a genetic biomarker of exposure to chemical agents.

“With this study we already know the in vitro experimental level, the concentration of propolis to be used to make it act as a radiation protector agent, without being cyto/genotoxic for normal cells. This is the first step, a starting point for future clinical assays. The final goal is to develop capsules containing the adequate doses of propolis, but many more hours of research are needed before we are able to do this,” Dr. Alegria Montoro added.

UAB lecturer Francesc Barquinero, currently on leave to work at the Institut de Radioprotection et de Sûreté Nucléaire (IRSN; Fontenay aux Roses, France), participated in the original planning of the study and its design, as well as the interpretation of the findings and posterior contextualization of other studies published.

In 2008, researchers at the Institute for Industrial, Radiophysical and Environmental Safety (ISIRyM) of the Technical University of Valencia and the University Hospital La Fe demonstrated that propolis can reduce by half the damage inflicted on chromosomes by ionized radiations, thereby protecting the DNA from these effects. The new study is essential, according to the investigators, in finding the range of concentrations in which this compound can have a toxic effect on nonirradiated cells.

Related Links:

Technical University of Valencia
University of Valencia
University Hospital La Fe



Channels

Genomics/Proteomics

view channel
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).

Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.... Read more

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.