Features Partner Sites Information LinkXpress
Sign In
Demo Company

Bee Venom Compound Tested for Radioprotector Qualities

By BiotechDaily International staff writers
Posted on 23 Jul 2012
Print article
A team of Spanish researchers conducted in vitro studies of cytotoxicity to evaluate the optimal concentration level of propolis, in which this natural substance extracted from bee resin would offer the maximum protection against ionized radiation and not be toxic for blood cells.

According to the researchers, from the Technical University of Valencia, the University Hospital La Fe, the University of Valencia, and the Universitat Autonoma de Barcelona, this optimal concentration level is between 120-500 µg/mL. “Within this range can be found maximum protection against radiation-induced damage and the substance does not reveal either a cytotoxicity nor a genotoxicity effect on nonirradiated human lymphocytes,” said Dr. Alegria Montoro, head of the laboratory of biological dosimetry at the University Hospital La Fe.

The conclusions of this study represent a starting point for future clinical applications using propolis. The results were published February 2012 in the journal Food and Chemical Toxicology, and a full revision of the study will be presented at the annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC12, which will be held in San Diego (CA, USA), in August 2012.

In the study, the researchers utilized four genetic biomarkers, including the mytotic index and the cell proliferation kinetics, with the aim of determining whether propolis has cytotoxic effects on cells. “Using these biomarkers makes it possible to discover how a substance affects cell division: a substance which is cytotoxic and modifies the cell division stage would do so by accelerating, slowing down or even stopping the process, and all three effects are negative,” explained Dr. Alegria Montoro.

The other two biomarkers used are the study of the possible induction of chromosome changesin nonirradiated cultures at different concentration levels and sister chromatid exchanges (SCEs), a genetic biomarker of exposure to chemical agents.

“With this study we already know the in vitro experimental level, the concentration of propolis to be used to make it act as a radiation protector agent, without being cyto/genotoxic for normal cells. This is the first step, a starting point for future clinical assays. The final goal is to develop capsules containing the adequate doses of propolis, but many more hours of research are needed before we are able to do this,” Dr. Alegria Montoro added.

UAB lecturer Francesc Barquinero, currently on leave to work at the Institut de Radioprotection et de Sûreté Nucléaire (IRSN; Fontenay aux Roses, France), participated in the original planning of the study and its design, as well as the interpretation of the findings and posterior contextualization of other studies published.

In 2008, researchers at the Institute for Industrial, Radiophysical and Environmental Safety (ISIRyM) of the Technical University of Valencia and the University Hospital La Fe demonstrated that propolis can reduce by half the damage inflicted on chromosomes by ionized radiations, thereby protecting the DNA from these effects. The new study is essential, according to the investigators, in finding the range of concentrations in which this compound can have a toxic effect on nonirradiated cells.

Related Links:

Technical University of Valencia
University of Valencia
University Hospital La Fe

Print article



view channel
Image: Glioblastoma multiforme (GBM) (Photo courtesy of the University of California, San Diego School of Medicine).

How Blocking TROY Signaling Slows Brain Cancer Growth

Cancer researchers have found how the low molecular weight drug propentofylline (PPF) slows the growth of the aggressive brain tumor glioblastoma multiforme (GBM). This form of brain cancer is the most... Read more


view channel
Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).

The Structure of the Nasal Cavity Channels Food Smells into the Nose and Avoids the Lungs

Three-dimensional printing technology was used to create a model of the nasal cavity that enabled researchers to demonstrate why the smell of food goes into the nose rather than down into the lungs.... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image:  The BioSpa 8 Automated Incubator (Photo courtesy of BioTek Instruments).

Smart Incubator System Automates Live Cell Assay Operations

A new instrument that automates laboratory workflow by linking microplate washers and dispensers with readers and imaging systems is now available for biotech and other life sciences researchers.... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.