Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Pancreatic Cells Derived from Human Embryonic Stem Cells Cure Diabetes in Rodent Models

By BiotechDaily International staff writers
Posted on 12 Jul 2012
Commercially available human embryonic stem cells (hESCs) have been induced to differentiate into fully functional pancreatic beta cells that were capable of restoring insulin production and regularizing glucose metabolism in two different rodent diabetes models.

Investigators at the University of British Columbia (Vancouver, Canada) and their colleagues at the biotechnology firm BetaLogics (Raritan, NJ, USA) developed a protocol to differentiate commercially available human embryonic stem cells (hESCs) in vitro into a highly enriched PDX1+ pancreatic progenitor cell population. These cells progressed in vivo into mature pancreatic endocrine cells.

Immature pancreatic precursor cells were transplanted into immunodeficient mice with streptozotocin-induced diabetes. Glycemia was initially controlled with exogenous insulin; however, as insulin levels derived from the grafted stem cells increased over time, the mice were weaned from the insulin. Glucose metabolism was eventually regulated by meal and glucose challenges. Similar differentiation of pancreatic precursor cells was observed after transplant into immunodeficient rats.

Additional details published in the June 27, 2012, online edition of the journal Diabetes revealed that throughout the in vivo maturation period hESC-derived endocrine cells exhibited gene and protein expression profiles that were remarkably similar to that of cells in the developing human fetal pancreas.

"We are very excited by these findings, but additional research is needed before this approach can be tested clinically in humans," said senior author Dr. Timothy Kieffer, professor of cellular and physiological sciences at the University of British Columbia. "The studies were performed in diabetic mice that lacked a properly functioning immune system that would otherwise have rejected the cells. We now need to identify a suitable way of protecting the cells from immune attack so that the transplant can ultimately be performed in the absence of any immunosuppression."

Related Links:
University of British Columbia
BetaLogics


Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.