Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Pancreatic Cells Derived from Human Embryonic Stem Cells Cure Diabetes in Rodent Models

By BiotechDaily International staff writers
Posted on 12 Jul 2012
Commercially available human embryonic stem cells (hESCs) have been induced to differentiate into fully functional pancreatic beta cells that were capable of restoring insulin production and regularizing glucose metabolism in two different rodent diabetes models.

Investigators at the University of British Columbia (Vancouver, Canada) and their colleagues at the biotechnology firm BetaLogics (Raritan, NJ, USA) developed a protocol to differentiate commercially available human embryonic stem cells (hESCs) in vitro into a highly enriched PDX1+ pancreatic progenitor cell population. These cells progressed in vivo into mature pancreatic endocrine cells.

Immature pancreatic precursor cells were transplanted into immunodeficient mice with streptozotocin-induced diabetes. Glycemia was initially controlled with exogenous insulin; however, as insulin levels derived from the grafted stem cells increased over time, the mice were weaned from the insulin. Glucose metabolism was eventually regulated by meal and glucose challenges. Similar differentiation of pancreatic precursor cells was observed after transplant into immunodeficient rats.

Additional details published in the June 27, 2012, online edition of the journal Diabetes revealed that throughout the in vivo maturation period hESC-derived endocrine cells exhibited gene and protein expression profiles that were remarkably similar to that of cells in the developing human fetal pancreas.

"We are very excited by these findings, but additional research is needed before this approach can be tested clinically in humans," said senior author Dr. Timothy Kieffer, professor of cellular and physiological sciences at the University of British Columbia. "The studies were performed in diabetic mice that lacked a properly functioning immune system that would otherwise have rejected the cells. We now need to identify a suitable way of protecting the cells from immune attack so that the transplant can ultimately be performed in the absence of any immunosuppression."

Related Links:
University of British Columbia
BetaLogics


WATERS CORPORATION

Channels

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.