Features Partner Sites Information LinkXpress
Sign In
Demo Company

Pancreatic Cells Derived from Human Embryonic Stem Cells Cure Diabetes in Rodent Models

By BiotechDaily International staff writers
Posted on 12 Jul 2012
Print article
Commercially available human embryonic stem cells (hESCs) have been induced to differentiate into fully functional pancreatic beta cells that were capable of restoring insulin production and regularizing glucose metabolism in two different rodent diabetes models.

Investigators at the University of British Columbia (Vancouver, Canada) and their colleagues at the biotechnology firm BetaLogics (Raritan, NJ, USA) developed a protocol to differentiate commercially available human embryonic stem cells (hESCs) in vitro into a highly enriched PDX1+ pancreatic progenitor cell population. These cells progressed in vivo into mature pancreatic endocrine cells.

Immature pancreatic precursor cells were transplanted into immunodeficient mice with streptozotocin-induced diabetes. Glycemia was initially controlled with exogenous insulin; however, as insulin levels derived from the grafted stem cells increased over time, the mice were weaned from the insulin. Glucose metabolism was eventually regulated by meal and glucose challenges. Similar differentiation of pancreatic precursor cells was observed after transplant into immunodeficient rats.

Additional details published in the June 27, 2012, online edition of the journal Diabetes revealed that throughout the in vivo maturation period hESC-derived endocrine cells exhibited gene and protein expression profiles that were remarkably similar to that of cells in the developing human fetal pancreas.

"We are very excited by these findings, but additional research is needed before this approach can be tested clinically in humans," said senior author Dr. Timothy Kieffer, professor of cellular and physiological sciences at the University of British Columbia. "The studies were performed in diabetic mice that lacked a properly functioning immune system that would otherwise have rejected the cells. We now need to identify a suitable way of protecting the cells from immune attack so that the transplant can ultimately be performed in the absence of any immunosuppression."

Related Links:
University of British Columbia

Print article



view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.