Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
GLOBETECH PUBLISHING
JIB

Drug Design Strategy May Fight Cancer More Effectively with Fewer Side Effects

By BiotechDaily International staff writers
Posted on 27 Jun 2012
A new approach to drug design has the potential to help identify future drugs to combat cancer and other diseases that will be more effective and have fewer side effects.

The design application was engineered by scientists from the University of California, San Francisco (UCSF; USA) and Mt. Sinai Medical Center (New York, NY, USA). Instead of looking for find magic bullets--chemicals that specifically attack one gene or protein involved in one specific part of a disease process--the new approach is searching for “magic shotguns” by sifting through the known field of chemicals to find the few special molecules that broadly disrupt the whole diseases process.

“We’ve always been looking for magic bullets,” said Kevan Shokat, PhD, chair of the department of cellular and molecular pharmacology at UCSF. “This is a magic shotgun--it doesn’t inhibit one target but a set of targets--and that gives us a much, much better ability to stop the cancer without causing as many side effects.”

Described in the June 7, 2012, issue of the journal Nature, the magic shotgun approach has already provided two potential drugs, called AD80 and AD81, which in fruit flies were more effective and less toxic than the drug vandetanib, approved by the US Food and Drug Administration (FDA) last year for the treatment of a certain type of thyroid cancer.

Drug design essentially entails disruption: in any disorder, there are many molecular interactions and other mechanisms that take place within specific tissues, and in the widest sense, most drugs are simply chemicals that interfere with the proteins and genes involved in those processes. The better a drug disrupts key parts of a disease process, the more effective it is.

The toxicity of a drug, however, refers to how it also disrupts other parts of the body’s system. Drugs always fall short of perfection in this sense, and all pharmaceuticals have some level of toxicity due to unwanted interactions the drugs have with other molecules in the body.

Scientists utilize the therapeutic index (the ratio of effective dose to toxic dose) as a way of defining how severe the side effects of a given drug would be. Many of the safest drugs on the market have therapeutic indexes that are 20 or higher--meaning that a person would have to take 20 times the prescribed dose to suffer severe side effects.

Many cancer drugs, on the other hand, have a therapeutic index of 1. In other words, the amount of the drug you need to take to treat the cancer is the exact amount that causes severe side effects. The difficulty, according to Dr. Shokat, is that cancer drug targets are so similar to normal human proteins that the drugs have widespread effects felt far outside the tumor.

While suffering the side effects of drugs is a reality that many people with cancer face, finding ways of minimizing this toxicity is a big aim pharmaceutical companies would like to resolve. Dr. Shokat and his colleagues believe the shotgun approach is one way to achieve this. The view that the best drugs are the most selective could be mistaken, Dr. Shokat noted, and for cancer, a magic shotgun may be more effective than a magic bullet.

Studying fruit flies, the investigators found a way to screen compounds to find the few that best disrupt an entire network of interacting genes and proteins. Instead of assessing a compound according to how well it suppresses a specific target, they deemed as best the compounds that inhibited not only that specific target but disrupted other areas of the network while not interacting with other genes and proteins that would cause toxic side effects.

Related Links:

University of California, San Francisco
Mt. Sinai Medical Center



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.