Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Genomes Reveal How MRSA Bacteria Gain Resistance to Last-Line Drugs

By BiotechDaily International staff writers
Posted on 05 Jun 2012
Researchers have determined and compared the genome sequences of MRSA strains now also resistant to vancomycin, a key last-line antibiotic for severe MRSA infections. The new information enabled the scientists to trace the origin and development of vancomycin resistance in these strains.


Since 2002, there have been 12 documented cases of vancomycin-resistant Staphylococcus aureus (VRSA) infection in the United States - all strains of Methicillin-resistant S. aureus (MRSA) clonal cluster 5 (CC5), the predominant lineage responsible for US hospital-acquired MRSA infections. Most of the VRSA cases arose in diabetic patients with limb wounds infected by multiple bacterial species, including vancomycin-resistant Enterococcus (VRE). Sequence comparisons in the current study showed unambiguously that each strain independently acquired transposon Tn1546, likely from the co-infecting VRE.

The team also identified shared features that may have helped acquire the vancomycin resistance and evade human immune defenses. "The genome sequence gave us unprecedented insight into what makes these highly resistant bacteria tick. Several things were remarkable," says team leader, Harvard’s Michael Gilmore, PhD; "Vancomycin resistance repeatedly went into just one tribe of MRSA, so the question became 'what makes that group special -- why did they start getting vancomycin resistance?"' First author Veronica Kos, PhD and senior research associate in Gilmore’s laboratory at Harvard’s Massachusetts Eye and Ear Infirmary (Boston, MA, USA) added, "What we found was that this group of MRSA has properties that appear to make it more social, so they can live with other bacteria like Enterococcus. This would allow those MRSA to more easily pick up new resistances. The good news is that some of these properties weaken the strain's ability to colonize, and may be limiting their spread."

VRSA and other CC5 strains were found to possess traits that appear to be advantageous for proliferation in mixed infections. They harbor a cluster of unique superantigens and lipoproteins that confound host immunity and so allow the bacteria to flourish, increasing the odds that resistance factors will be transferred in a mixed infection. A frameshift identified in the dprA gene may also have made this lineage conducive to the transposon acquisition. The genomes also provided clues as to why person-to-person spread of VRSA has not become common. Strains in the CC5 clade lack a bacteriocin operon, a disadvantage in any encounter with other naturally occurring staph strains that normally live on the skin and that do produce this factor.

The research, reported on May 22, 2012, in the journal mBio, was conducted through the Harvard-wide Antibiotic Resistance Program, funded by the National Institute of Allergy and Infectious Diseases (NIAID; Bethesda, MD, USA). Scientists of the program, in partnership with others, are using information from this and related studies to develop new ways to help prevent and treat infection by MRSA, VRSA, and VRE. They have identified several new compounds that stop MRSA by hitting new targets, and are currently subjecting these to further tests.

Related Links:
Massachusetts Eye and Ear Infirmary
NIH/National Institute of Allergy and Infectious Diseases



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Genome-Wide Mutation-Searching Computational Software Designed for Genomic Medicine

Analysis software cross-references a patient’s symptoms with his genome sequence to help physicians in the diagnosis of disease. This software was created by a team of scientists from A*STAR’s Genome Institute of Singapore (GIS), led by Dr. Pauline Ng. The research findings were published August 3, 2014, in the journal... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.