Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

New Target Devised for Antiangiogenic, Antitumoral Therapies

By BiotechDaily International staff writers
Posted on 29 May 2012
Spanish researchers have demonstrated that the antibody-based blocking of ephrinB2, a protein involved in angiogenesis and lymphoangiogenesis, may represent an effective strategy for the development of antiangiogenic and antitumoral therapies.

The study’s findings appeared in the May 2012 issue of Blood, the journal of the American Society of Hematology. Spanish National Cancer Research Center (CNIO; Madrid, Spain) researchers led by Jorge L. Martínez-Torrecuadrada, from the proteomics unit, created highly specific human antibodies against ephrin-B2 employing a phage display-line approach. These specific antibodies were able to suppress endothelial cell migration and tube formation in in vitro assays. Moreover, systemic treatment of mice xenografted with lung, pancreatic, or colon carcinoma cells resulted in a considerable decrease in the amount of blood and lymphatic vessels.

Along with this, an extreme suppression of the tumor growth was observed in every xenograft mouse model used. Therefore, these results validated ephrinB2 as a potential therapeutic target in tumor angiogenesis and lymphangiogenesis and demonstrated that the ephrinB2-specific antibodies developed in this study may be suitable as leads for the development of new improved antiangiogenic therapies, which can be used alone or can complement or synergize with other existing antiangiogenic cancer therapies or other angiogenesis-related pathologies.

Angiogenesis is a complicated process by which new blood vascular vessels grow from preexisting ones. In adulthood and under physiologic conditions, this process only occurs in specific instance, such as wound healing or in the menstrual cycle, but it is also an important factor in several pathologies such as cancer, in which the tumor triggers the formation of new blood vessels. This new vasculature provides the tumor with oxygen and nutrients, allowing these cells to grow, invade neighboring tissue and eventually spread to distant organs.

In addition to blood vasculature, tumor growth induces the development of lymphatic vessels in a similar process called lymphangiogenesis that plays a key role in tissue-fluid homeostasis, as a tissue-drainage system. Recent studies also revealed the vital significance of this lymphatic vasculature for the metastatic spread of tumor cells.

In the last decades, the wide-ranging research in the field of tumor-derived angiogenesis led to the identification of several angiogenic targets that can be effectively blocked in order to prevent the formation of new blood vessels in tumors, starving them of oxygen and nutrients and thereby preventing their growth.

As a result of these studies, several antibodies have been successfully developed and have demonstrated clinical benefit in treating several tumor types, such as bevacizumab (Avastin), which is based on the inhibition of vascular endothelial growth factor (VEGF) that induces endothelial cell proliferation, migration, and differentiation.

However, new research and clinical evidence suggests that tumors treated with this antiangiogenic approach may ultimately develop resistance to therapy and exhibit a progression to greater invasiveness. Therefore, there is an urgent need to explore other angiogenic targets that can be used therapeutically, such as the one validated by CNIO researchers in this study.

Related Links:

Spanish National Cancer Research Center




comments powered by Disqus

Channels

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.