Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Grape Seed Compound Slows Progression of Alzheimer’s Disease in Mouse Model

By BiotechDaily International staff writers
Posted on 15 May 2012
Print article
A team of neurobiologists has identified the specific polyphenolic compound responsible for improved cognitive function in a mouse model of Alzheimer's disease (AD).

Investigators at Mount Sinai School of Medicine (New York, NY, USA) had previously shown that compounds present in grape seed polyphenolic extract (GSPE) protected against the development of Alzheimer’s disease by blocking the formation of toxic amyloid-beta (A-beta) oligomers in brain tissue.

In the current study, which was published in the April 11, 2012, issue of the Journal of Neuroscience, they revealed new information relating to the bioavailability, metabolism, and bioactivity of this compound, especially in the brain.

They reported that GSPE is comprised of the proanthocyanidin (PAC) catechin and epicatechin in monomeric (Mo), oligomeric, and polymeric forms. Following oral administration of the independent GSPE forms, only Mo was able to improve cognitive function and only Mo metabolites could selectively reach and accumulate in the brain. Furthermore, they showed that a biosynthetic epicatechin metabolite, 3′-O-methyl-epicatechin-5-O-beta-glucuronide (3′-O-Me-EC-Gluc), one of the PAC metabolites identified in the brain following Mo treatment, promoted basal synaptic transmission and long-term potentiation at physiologically relevant concentrations in hippocampus slices through mechanisms associated with cAMP response element binding protein (CREB) signaling. This activity benefited cognition by improving synaptic plasticity in the brain.

“My team, along with many members of the scientific community, did not know how we could harness the efficacy of naturally occurring polyphenols in food for treatment of Alzheimer’s disease,” said senior author Dr. Giulio Maria Pasinetti, professor of neurology at Mount Sinai School of Medicine. “We were skeptical that these naturally occurring polyphenols would reach the brain because they are extensively metabolized following ingestion. While this is an exciting development, we have a lot to discover and many years of testing before this agent can be considered in humans. I look forward to further studying this compound to determine its feasibility as a treatment for Alzheimer’s disease.”

Related Links:

Mount Sinai School of Medicine




Print article

Channels

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A three-dimensional printer adapted for stem cell production (Photo courtesy of Nano Dimension).

Israeli Developers Demonstrate Prototype Three-Dimensional Bioprinter

Two Israeli companies have combined efforts in the development of three-dimensional printer technology for the production of stem cells. The three-dimensional print electronics developer Nano Dimension... Read more

Business

view channel

Acquisition to Boost Development of Drugs for Neurogenic Conditions

According to a recent announcement, a privately held biotechnology/drug development company is to be acquired by one of the major pharmaceutical manufacturers. The drug manufacturer Merck & Co. (Kenilworth, NJ, USA) has agreed to pay 500 million USD up front for Afferent Pharmaceuticals (San Mateo, CA, USA) and up... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.