Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Grape Seed Compound Slows Progression of Alzheimer’s Disease in Mouse Model

By BiotechDaily International staff writers
Posted on 15 May 2012
A team of neurobiologists has identified the specific polyphenolic compound responsible for improved cognitive function in a mouse model of Alzheimer's disease (AD).

Investigators at Mount Sinai School of Medicine (New York, NY, USA) had previously shown that compounds present in grape seed polyphenolic extract (GSPE) protected against the development of Alzheimer’s disease by blocking the formation of toxic amyloid-beta (A-beta) oligomers in brain tissue.

In the current study, which was published in the April 11, 2012, issue of the Journal of Neuroscience, they revealed new information relating to the bioavailability, metabolism, and bioactivity of this compound, especially in the brain.

They reported that GSPE is comprised of the proanthocyanidin (PAC) catechin and epicatechin in monomeric (Mo), oligomeric, and polymeric forms. Following oral administration of the independent GSPE forms, only Mo was able to improve cognitive function and only Mo metabolites could selectively reach and accumulate in the brain. Furthermore, they showed that a biosynthetic epicatechin metabolite, 3′-O-methyl-epicatechin-5-O-beta-glucuronide (3′-O-Me-EC-Gluc), one of the PAC metabolites identified in the brain following Mo treatment, promoted basal synaptic transmission and long-term potentiation at physiologically relevant concentrations in hippocampus slices through mechanisms associated with cAMP response element binding protein (CREB) signaling. This activity benefited cognition by improving synaptic plasticity in the brain.

“My team, along with many members of the scientific community, did not know how we could harness the efficacy of naturally occurring polyphenols in food for treatment of Alzheimer’s disease,” said senior author Dr. Giulio Maria Pasinetti, professor of neurology at Mount Sinai School of Medicine. “We were skeptical that these naturally occurring polyphenols would reach the brain because they are extensively metabolized following ingestion. While this is an exciting development, we have a lot to discover and many years of testing before this agent can be considered in humans. I look forward to further studying this compound to determine its feasibility as a treatment for Alzheimer’s disease.”

Related Links:

Mount Sinai School of Medicine




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The new peptide offers a triple hormone effect in a single-cell molecule (Photo courtesy of Indiana University).

Tripeptide Drug Effectively Controls Metabolic Syndrome in Rodent Model

Promising results in reducing obesity and normalizing glucose metabolism obtained with a synthetic dipeptide drug have been enhanced by the addition of a molecule of a third hormone, glucagon.... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.