Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Nerve Guidance Conduits May Help Damaged Nerves Regrow, Restore Function

By BiotechDaily International staff writers
Posted on 10 May 2012
Engineers have developed a way of helping nerves damaged by traumatic accidents to repair naturally, which could improve the prospect of restoring sensation and movement in injured limbs.

Scientists from the University of Sheffield (UK), collaborating with Laser Zentrum Hannover (Germany) published their findings April 23, 2012, in the journal Biofabrication. The team described a new way to make medical devices called nerve guidance conduits (NGCs).

The technology is based on laser direct writing, which enables the fabrication of complex structures from computer files with the use of computer-aided design/manufacturing (CAD/CAM) technology, and has allowed the research researchers to construct NGCs with designs that are far more sophisticated than ever before possible.

Currently patients with severe traumatic nerve damage suffer a devastating loss of sensation and/or movement in the affected limb. The conventional course of action, where possible, is to surgically suture or graft the nerve endings together. However, reconstructive surgery frequently does not result in complete recovery.

“When nerves in the arms or legs are injured they have the ability to re-grow, unlike in the spinal cord; however, they need assistance to do this,” said University of Sheffield professor of bioengineering, John Haycock. “We are designing scaffold implants that can bridge an injury site and provide a range of physical and chemical cues for stimulating this regrowth.”

The new conduit is made from a biodegradable synthetic polymer compound based on polylactic acid and has been designed to guide damaged nerves to re-grow through a number of small channels. “Nerves aren’t just like one long cable, they’re made up of lots of small cables, similar to how an electrical wire is constructed,” said lead author Dr. Frederik Claeyssens, from the Sheffield’s department of materials science and engineering. “Using our new technique we can make a conduit with individual strands so the nerve fibers can form a similar structure to an undamaged nerve.”

Once the nerve is regrown, the conduit biodegrades naturally. The researchers hope that this approach will significantly increase recovery for a wide range of peripheral nerve injuries. In laboratory experiments, nerve cells added to the polymer conduit grew naturally within its channeled structure and the research team is now working towards clinical trials.

“If successful we anticipate these scaffolds will not just be applicable to peripheral nerve injury, but could also be developed for other types of nerve damage too. The technique of laser direct writing may ultimately allow production of scaffolds that could help in the treatment of spinal cord injury,” said Dr. Claeyssens. “What’s exciting about this work is that not only have we designed a new method for making nerve guide scaffolds which support nerve growth, we’ve also developed a method of easily reproducing them through micromolding. This technology could make a huge difference to patients suffering severe nerve damage.”

Related Links:
University of Sheffield
Laser Zentrum Hannover


comments powered by Disqus

Channels

Genomics/Proteomics

view channel

Researchers Discover New Data on Protein Kinase A

By employing X-rays and neutron beams, a team of researchers have gleaned new information about protein kinase A (PKA), an omnipresent master control protein that helps regulate basic cellular functions such as energy consumption and interactions with neurotransmitters, hormones, and drugs. The scientists who conducted... Read more

Drug Discovery

view channel

Molecule in Green Tea Used as Carrier for Anticancer Proteins

A molecule that is a key ingredient in green tea can be employed as a carrier for anticancer proteins, forming a stable and effective therapeutic nanocomplex. This new discovery could help to construct better drug-delivery systems. Some cancer treatments depend on medication comprising the therapeutic drug and a carrier... Read more

Lab Technologies

view channel
Image: The UC Santa Cruz Ebola Genome Portal contains links to the newly created Ebola browser and to scientific literature on the deadly virus (Photo courtesy of UCSC).

Ebola Genome Browser Now Online to Help Scientists’ Respond to Crisis

A US genomics institute has just released a new Ebola genome browser to help international researchers develop a vaccine and antiserum to help stop the spread of the Ebolavirus. The investigators led... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.