Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Nerve Guidance Conduits May Help Damaged Nerves Regrow, Restore Function

By BiotechDaily International staff writers
Posted on 10 May 2012
Engineers have developed a way of helping nerves damaged by traumatic accidents to repair naturally, which could improve the prospect of restoring sensation and movement in injured limbs.

Scientists from the University of Sheffield (UK), collaborating with Laser Zentrum Hannover (Germany) published their findings April 23, 2012, in the journal Biofabrication. The team described a new way to make medical devices called nerve guidance conduits (NGCs).

The technology is based on laser direct writing, which enables the fabrication of complex structures from computer files with the use of computer-aided design/manufacturing (CAD/CAM) technology, and has allowed the research researchers to construct NGCs with designs that are far more sophisticated than ever before possible.

Currently patients with severe traumatic nerve damage suffer a devastating loss of sensation and/or movement in the affected limb. The conventional course of action, where possible, is to surgically suture or graft the nerve endings together. However, reconstructive surgery frequently does not result in complete recovery.

“When nerves in the arms or legs are injured they have the ability to re-grow, unlike in the spinal cord; however, they need assistance to do this,” said University of Sheffield professor of bioengineering, John Haycock. “We are designing scaffold implants that can bridge an injury site and provide a range of physical and chemical cues for stimulating this regrowth.”

The new conduit is made from a biodegradable synthetic polymer compound based on polylactic acid and has been designed to guide damaged nerves to re-grow through a number of small channels. “Nerves aren’t just like one long cable, they’re made up of lots of small cables, similar to how an electrical wire is constructed,” said lead author Dr. Frederik Claeyssens, from the Sheffield’s department of materials science and engineering. “Using our new technique we can make a conduit with individual strands so the nerve fibers can form a similar structure to an undamaged nerve.”

Once the nerve is regrown, the conduit biodegrades naturally. The researchers hope that this approach will significantly increase recovery for a wide range of peripheral nerve injuries. In laboratory experiments, nerve cells added to the polymer conduit grew naturally within its channeled structure and the research team is now working towards clinical trials.

“If successful we anticipate these scaffolds will not just be applicable to peripheral nerve injury, but could also be developed for other types of nerve damage too. The technique of laser direct writing may ultimately allow production of scaffolds that could help in the treatment of spinal cord injury,” said Dr. Claeyssens. “What’s exciting about this work is that not only have we designed a new method for making nerve guide scaffolds which support nerve growth, we’ve also developed a method of easily reproducing them through micromolding. This technology could make a huge difference to patients suffering severe nerve damage.”

Related Links:
University of Sheffield
Laser Zentrum Hannover


WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Electron micrograph of Hepatitis C virus purified from cell culture. Scale bar is 50 nanometers (Photo courtesy of the Center for the Study of Hepatitis C, the Rockefeller University).

Oxidized LDL Predicts Response to Interferon Treatment of Chronic Hepatitis C and May Be a Treatment Option

Oxidized low-density lipoprotein (oxLDL) in the blood was shown to predict responsiveness to interferon treatment in patients with chronic Hepatitis C virus (HCV) infection and to inhibit spread of the... Read more

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.