Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Nerve Guidance Conduits May Help Damaged Nerves Regrow, Restore Function

By BiotechDaily International staff writers
Posted on 10 May 2012
Engineers have developed a way of helping nerves damaged by traumatic accidents to repair naturally, which could improve the prospect of restoring sensation and movement in injured limbs.

Scientists from the University of Sheffield (UK), collaborating with Laser Zentrum Hannover (Germany) published their findings April 23, 2012, in the journal Biofabrication. The team described a new way to make medical devices called nerve guidance conduits (NGCs).

The technology is based on laser direct writing, which enables the fabrication of complex structures from computer files with the use of computer-aided design/manufacturing (CAD/CAM) technology, and has allowed the research researchers to construct NGCs with designs that are far more sophisticated than ever before possible.

Currently patients with severe traumatic nerve damage suffer a devastating loss of sensation and/or movement in the affected limb. The conventional course of action, where possible, is to surgically suture or graft the nerve endings together. However, reconstructive surgery frequently does not result in complete recovery.

“When nerves in the arms or legs are injured they have the ability to re-grow, unlike in the spinal cord; however, they need assistance to do this,” said University of Sheffield professor of bioengineering, John Haycock. “We are designing scaffold implants that can bridge an injury site and provide a range of physical and chemical cues for stimulating this regrowth.”

The new conduit is made from a biodegradable synthetic polymer compound based on polylactic acid and has been designed to guide damaged nerves to re-grow through a number of small channels. “Nerves aren’t just like one long cable, they’re made up of lots of small cables, similar to how an electrical wire is constructed,” said lead author Dr. Frederik Claeyssens, from the Sheffield’s department of materials science and engineering. “Using our new technique we can make a conduit with individual strands so the nerve fibers can form a similar structure to an undamaged nerve.”

Once the nerve is regrown, the conduit biodegrades naturally. The researchers hope that this approach will significantly increase recovery for a wide range of peripheral nerve injuries. In laboratory experiments, nerve cells added to the polymer conduit grew naturally within its channeled structure and the research team is now working towards clinical trials.

“If successful we anticipate these scaffolds will not just be applicable to peripheral nerve injury, but could also be developed for other types of nerve damage too. The technique of laser direct writing may ultimately allow production of scaffolds that could help in the treatment of spinal cord injury,” said Dr. Claeyssens. “What’s exciting about this work is that not only have we designed a new method for making nerve guide scaffolds which support nerve growth, we’ve also developed a method of easily reproducing them through micromolding. This technology could make a huge difference to patients suffering severe nerve damage.”

Related Links:
University of Sheffield
Laser Zentrum Hannover


comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.