Features Partner Sites Information LinkXpress
Sign In
Demo Company

Nerve Guidance Conduits May Help Damaged Nerves Regrow, Restore Function

By BiotechDaily International staff writers
Posted on 10 May 2012
Print article
Engineers have developed a way of helping nerves damaged by traumatic accidents to repair naturally, which could improve the prospect of restoring sensation and movement in injured limbs.

Scientists from the University of Sheffield (UK), collaborating with Laser Zentrum Hannover (Germany) published their findings April 23, 2012, in the journal Biofabrication. The team described a new way to make medical devices called nerve guidance conduits (NGCs).

The technology is based on laser direct writing, which enables the fabrication of complex structures from computer files with the use of computer-aided design/manufacturing (CAD/CAM) technology, and has allowed the research researchers to construct NGCs with designs that are far more sophisticated than ever before possible.

Currently patients with severe traumatic nerve damage suffer a devastating loss of sensation and/or movement in the affected limb. The conventional course of action, where possible, is to surgically suture or graft the nerve endings together. However, reconstructive surgery frequently does not result in complete recovery.

“When nerves in the arms or legs are injured they have the ability to re-grow, unlike in the spinal cord; however, they need assistance to do this,” said University of Sheffield professor of bioengineering, John Haycock. “We are designing scaffold implants that can bridge an injury site and provide a range of physical and chemical cues for stimulating this regrowth.”

The new conduit is made from a biodegradable synthetic polymer compound based on polylactic acid and has been designed to guide damaged nerves to re-grow through a number of small channels. “Nerves aren’t just like one long cable, they’re made up of lots of small cables, similar to how an electrical wire is constructed,” said lead author Dr. Frederik Claeyssens, from the Sheffield’s department of materials science and engineering. “Using our new technique we can make a conduit with individual strands so the nerve fibers can form a similar structure to an undamaged nerve.”

Once the nerve is regrown, the conduit biodegrades naturally. The researchers hope that this approach will significantly increase recovery for a wide range of peripheral nerve injuries. In laboratory experiments, nerve cells added to the polymer conduit grew naturally within its channeled structure and the research team is now working towards clinical trials.

“If successful we anticipate these scaffolds will not just be applicable to peripheral nerve injury, but could also be developed for other types of nerve damage too. The technique of laser direct writing may ultimately allow production of scaffolds that could help in the treatment of spinal cord injury,” said Dr. Claeyssens. “What’s exciting about this work is that not only have we designed a new method for making nerve guide scaffolds which support nerve growth, we’ve also developed a method of easily reproducing them through micromolding. This technology could make a huge difference to patients suffering severe nerve damage.”

Related Links:
University of Sheffield
Laser Zentrum Hannover

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.