Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Gene “Toggle” Regenerates Injured Heart Cells

By BiotechDaily International staff writers
Posted on 08 May 2012
For the first time, researchers have transformed scar tissue that grows after a heart attack into regenerated heart muscle using microRNAs, according to new lab animal research. If validated in human studies, this finding could help prevent heart failure after a heart attack and applied to other types of tissue regeneration.

The study’s findings were reported online before print April 26, 2012, in Circulation Research, an American Heart Association journal. After a heart attack, heart muscle does not effortlessly regenerate and it accumulates scar tissue, comprised of cells called fibroblasts--increasing risk for heart failure.

“Researchers have tried various approaches, including the use of stem cells, to regenerate damaged heart muscle tissue,” said Victor J. Dzau, MD, the study’s senior author and a professor of medicine at Duke University Medical Center (Durham, NC, USA). “This is the first study to use microRNA, which are small molecules that control gene expression, to reprogram fibroblasts into heart muscle cells. We have not only shown evidence of this tissue regeneration in cell cultures, but also in mice.”

Using microRNA is simpler than many other tissue-regenerating approaches, according to Dr. Dzau, who is also chancellor for health affairs at Duke University. For example, stem cells are not easy to work with and have ethical issues surrounding their use, he noted. “This research represents a major advance in regenerative medicine overcoming the difficulties encountered with stem cells, and may be applied to other conditions of tissue damage such as stroke and spinal cord injury.”

Dr. Dzau’s team identified a combination of three microRNA types that convert fibroblasts to muscle cells. In the next phase of research, the researchers will assess whether microRNAs repair damaged hearts in larger animals and improve heart function. If those studies prove safe and effective, they will begin human studies. “If everything comes to fruition, I think we will see this as a therapy in the next decade,” Dr. Dzau said. “Conceivably, we’ll use it to regenerate hearts damaged by heart attacks, avoiding heart failure and saving lives.”

Related Links:

Duke University Medical Center




WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Electron micrograph of Hepatitis C virus purified from cell culture. Scale bar is 50 nanometers (Photo courtesy of the Center for the Study of Hepatitis C, the Rockefeller University).

Oxidized LDL Predicts Response to Interferon Treatment of Chronic Hepatitis C and May Be a Treatment Option

Oxidized low-density lipoprotein (oxLDL) in the blood was shown to predict responsiveness to interferon treatment in patients with chronic Hepatitis C virus (HCV) infection and to inhibit spread of the... Read more

Drug Discovery

view channel
Image: Molecular model of the anti-cancer drug 5-fluorouracil (Photo courtesy of Wikimedia Commons).

Novel Microcapsule Approach Reduces Toxic Side Effects of Chemotherapy

Cancer researchers have reduced chemotherapy's toxic side effects by using nanoporous capsules to transport an enzyme to the site of a tumor where it is activated by a selective heating process to convert... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.