Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Gene “Toggle” Regenerates Injured Heart Cells

By BiotechDaily International staff writers
Posted on 08 May 2012
For the first time, researchers have transformed scar tissue that grows after a heart attack into regenerated heart muscle using microRNAs, according to new lab animal research. If validated in human studies, this finding could help prevent heart failure after a heart attack and applied to other types of tissue regeneration.

The study’s findings were reported online before print April 26, 2012, in Circulation Research, an American Heart Association journal. After a heart attack, heart muscle does not effortlessly regenerate and it accumulates scar tissue, comprised of cells called fibroblasts--increasing risk for heart failure.

“Researchers have tried various approaches, including the use of stem cells, to regenerate damaged heart muscle tissue,” said Victor J. Dzau, MD, the study’s senior author and a professor of medicine at Duke University Medical Center (Durham, NC, USA). “This is the first study to use microRNA, which are small molecules that control gene expression, to reprogram fibroblasts into heart muscle cells. We have not only shown evidence of this tissue regeneration in cell cultures, but also in mice.”

Using microRNA is simpler than many other tissue-regenerating approaches, according to Dr. Dzau, who is also chancellor for health affairs at Duke University. For example, stem cells are not easy to work with and have ethical issues surrounding their use, he noted. “This research represents a major advance in regenerative medicine overcoming the difficulties encountered with stem cells, and may be applied to other conditions of tissue damage such as stroke and spinal cord injury.”

Dr. Dzau’s team identified a combination of three microRNA types that convert fibroblasts to muscle cells. In the next phase of research, the researchers will assess whether microRNAs repair damaged hearts in larger animals and improve heart function. If those studies prove safe and effective, they will begin human studies. “If everything comes to fruition, I think we will see this as a therapy in the next decade,” Dr. Dzau said. “Conceivably, we’ll use it to regenerate hearts damaged by heart attacks, avoiding heart failure and saving lives.”

Related Links:

Duke University Medical Center




Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.