Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Melanin’s Ability to Maintain Radioprotection Examined

By BiotechDaily International staff writers
Posted on 07 Sep 2011
Sun worshipers have long known that melanin in their skin cells provides protection from the damage caused by visible and ultraviolet light. More recent studies have shown that melanin, which is produced by multitudes of organisms, also provides some species with protection from ionizing radiation.

In certain microbes, in particular some organisms from near the former nuclear reactor facilities in Chernobyl (Ukraine), melanin has even been linked to increased growth in the presence of ionizing radiation.

Research at the US Department of Energy’s Savannah River National Laboratory (SRNL; Aiken, SC, USA), in collaboration with the Albert Einstein College of Medicine (Bronx, NY, USA), has provided clues into the electrochemical mechanism that gives the complex polymer known as melanin its long-term radioprotective properties, with an objective of using that knowledge to develop materials that mimic those natural properties.

An article in the August 2011 issue of the journal Bioelectrochemistry described how the researchers established that ionizing radiation interacts with melanin to alter its oxidation-reduction potential, resulting in electric current production.

Radiation causes damage by stripping away electrons from its target. “Over time, as melanin is bombarded with radiation and electrons are knocked away, you would expect to see the melanin become oxidized, or bleached out, and lose its ability to provide protection,” said Dr. Charles Turick, science fellow with SRNL, “but that’s not what we’re seeing. Instead, the melanin continuously restores itself.”

The investigator’s research took them a step closer to clarifying that self-restoration process. They demonstrated that melanin could receive electrons, countering the oxidizing effects of the gamma radiation. The work showed, for the first time, that constant exposure of melanin to gamma radiation results in electric current production.

Mimicking that capability would be beneficial, for example, in the space industry, where satellites and other equipment are exposed to high levels of radiation for long spans of time. “Looking at materials, a constantly gamma radiation-oxidized electrode consisting in part of melanin would continuously accept electrons, thereby resulting in a current response,” Dr. Turick said. “If we could understand how that works, we could keep that equipment working for a very long time.”


Related Links:
Energy’s Savannah River National Laboratory
Albert Einstein College of Medicine





Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.