Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Melanin’s Ability to Maintain Radioprotection Examined

By BiotechDaily International staff writers
Posted on 07 Sep 2011
Sun worshipers have long known that melanin in their skin cells provides protection from the damage caused by visible and ultraviolet light. More recent studies have shown that melanin, which is produced by multitudes of organisms, also provides some species with protection from ionizing radiation.

In certain microbes, in particular some organisms from near the former nuclear reactor facilities in Chernobyl (Ukraine), melanin has even been linked to increased growth in the presence of ionizing radiation.

Research at the US Department of Energy’s Savannah River National Laboratory (SRNL; Aiken, SC, USA), in collaboration with the Albert Einstein College of Medicine (Bronx, NY, USA), has provided clues into the electrochemical mechanism that gives the complex polymer known as melanin its long-term radioprotective properties, with an objective of using that knowledge to develop materials that mimic those natural properties.

An article in the August 2011 issue of the journal Bioelectrochemistry described how the researchers established that ionizing radiation interacts with melanin to alter its oxidation-reduction potential, resulting in electric current production.

Radiation causes damage by stripping away electrons from its target. “Over time, as melanin is bombarded with radiation and electrons are knocked away, you would expect to see the melanin become oxidized, or bleached out, and lose its ability to provide protection,” said Dr. Charles Turick, science fellow with SRNL, “but that’s not what we’re seeing. Instead, the melanin continuously restores itself.”

The investigator’s research took them a step closer to clarifying that self-restoration process. They demonstrated that melanin could receive electrons, countering the oxidizing effects of the gamma radiation. The work showed, for the first time, that constant exposure of melanin to gamma radiation results in electric current production.

Mimicking that capability would be beneficial, for example, in the space industry, where satellites and other equipment are exposed to high levels of radiation for long spans of time. “Looking at materials, a constantly gamma radiation-oxidized electrode consisting in part of melanin would continuously accept electrons, thereby resulting in a current response,” Dr. Turick said. “If we could understand how that works, we could keep that equipment working for a very long time.”


Related Links:
Energy’s Savannah River National Laboratory
Albert Einstein College of Medicine





Channels

Genomics/Proteomics

view channel
Image: Cancer cells, left, were pretreated with a drug that blocks the ERK signal, and right, without the pretreatment. Top cells are untreated, while the bottom ones are stimulated (Photo courtesy of the Weizmann Institute of Science).

Prevention of ERK Nuclear Translocation Blocks Cancer Proliferation in Animal Models

A team of cell biologists has shown that the cancer promoting effects of ERK dysregulation can be blocked by low molecular weight drugs that prevent translocation of this kinase from the cells' cytoplasm... Read more

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

21 Apr 2015 - 23 Apr 2015
21 Apr 2015 - 23 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.