Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Oncolytic Viruses Shown to Target and Kill Pancreatic Cancer Stem Cells

By BiotechDaily International staff writers
Posted on 25 May 2011
Oncolytic viruses quickly infect and kill cancer stem cells, which may provide a treatment for tumors that are resistant to conventional chemotherapy and radiation, particularly pancreatic cancer, according to new research. The findings are particularly significant since pancreatic cancer has a poor prognosis and is difficult to detect and treat at early stages.

Investigators led by Joyce Wong, MD, a surgical researcher with Memorial Sloan-Kettering Cancer Center (New York, NY, USA), examined whether they could use oncolytic viruses, which are naturally occurring viruses that have been genetically engineered to be safe and express tracking genes, as a possible therapy against pancreatic cancer stem cells. These stem cells are thought to cause disease recurrence and metastasis, even after therapy, and oncolytic viruses may offer a new treatment strategy.

"What we learned is that oncolytic viruses have been engineered to selectively target cancer cells and have a low toxicity profile in animal studies," said Dr. Wong. "Targeting the cancer stem cell may enhance our ability to eradicate tumors and prevent future recurrence of disease."

While much research has been performed on isolating the cancer stem cell from various hematologic cancers, this research was based on the presence or absence of specific cell surface markers. Numerous mechanisms of how these cancer stem cells resist chemotherapy and radiation have also been examined. However, up to now, there has not been any research assessing whether genetically modified viruses can target and kill pancreatic cancer stem cells.

Investigators tried to determine whether the viruses containing a marker gene that expresses green fluorescent protein could infect pancreatic cancer stem cells and ultimately kill the cancer stem cell. Their findings were promising and validated that viral activity was correlated with green fluorescent protein expression.

Dr. Wong added that future studies are needed to determine whether oncolytic virus administration in vivo will help eradicate tumors and prevent future disease recurrence, and that while these initial findings are encouraging, further study is necessary to see whether oncolytic viruses will be clinically beneficial as a therapy.

Dr. Wong presented the study's findings at Digestive Disease Week 2011 (DDW) May 9, 2011, in Chicago (IL, USA). DDW is the largest international gathering of physicians, researchers, and academics in the fields of gastroenterology, hepatology, endoscopy, and gastrointestinal surgery.

Related Links:

Memorial Sloan-Kettering Cancer Center




comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.