Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Indian Spice Ingredient Kills Cancer Cells

By BiotechDaily International staff writers
Posted on 10 Nov 2009
A new study has revealed that curcumin, a compound found in the spice Turmeric, kills esophageal cancer cells in the laboratory via an unforeseen cell-death mechanism.

Researchers at University College Cork (UCC, Ireland) found that curcumin treatment of an esophageal cancer cell line reduced the viability of all cells within 24 hours of treatment. Since the common path of cell death is apoptosis--a cell suicide path triggered by proteins called caspases--the researchers added a molecule that stops the caspases triggering apoptosis, and found that it made no difference to the number of cells that died. The curcumin seems to induce cell death by a mechanism that was not reliant on apoptosis induction, and in fact, the cells began to digest themselves. The study was published in the October 28, 2009, issue of the British Journal of Cancer.

"The incidence of esophageal cancer has gone up by more than a half since the 70's, particularly in the Western world, and this is thought to be linked to rising rates of obesity, alcohol intake and reflux disease, so finding ways to both treat and prevent this disease is extremely important,” said study coauthor Professor Gerald O'Sullivan, M.D., Ph.D., who heads the Cork Cancer Research Center (CCRC) at UCC. "The development of natural compounds as chemo-preventative agents is also a very promising area of research.”

Curcumin is the principal curcuminoid of the ginger family (Zingiberaceae); the other two curcuminoids are desmethoxycurcumin and bis-desmethoxycurcumin. The curcuminoids are polyphenols and thus responsible for the yellow color of turmeric, which has been used historically as a component of Indian Ayurvedic medicine since 1900 BCE to treat a wide variety of ailments. A recent study on curcumin effects on cancer stated that curcumin modulates growth of tumor cells through regulation of multiple cell signaling pathways, including the cell proliferation pathway, cell survival pathway, caspase activation pathway, tumor suppressor pathway, death receptor pathway, mitochondrial pathways, and the protein kinase pathway.

Related Links:

University College Cork



Channels

Drug Discovery

view channel
Image: Cancer cells were treated with a control (left) and the overstimulating compound MCB-613 (right) (Photo courtesy of Dr. Lei Wang, Baylor University College of Medicine).

Drug Candidate Propels Cancer Cells into Fatal Overdrive

A candidate drug that destroys cancer cells by stimulating them to produce more proteins than the cells can actually process was shown to kill a wide variety of cancer cells in culture and to inhibit tumor... Read more

Lab Technologies

view channel
Image: The Synergy Neo2 Multi-Mode Reader recently received Cisbio HTRF certification (Photo courtesy of BioTek Instruments Inc.).

High-Speed Multimode Microplate Reader Receives Homogenous Time-Resolved Fluorescence Certification

A new high-performance, high-speed microplate reader has received HTRF (homogenous time-resolved fluorescence) accreditation that certifies that it complies with standards for detection set by a major... Read more

Business

view channel

Innovative Microbial Diagnostics Developer Acquired by Biomedical Giant

A biotech company noted for its development of innovative products in the field of molecular microbiology diagnostics has been acquired by one of the world's largest biomedical corporations. GeneWEAVE BioSciences, Inc.(Los Gatos, CA, USA) and Roche (Basel, Switzerland) have announced that Roche will be purchasing the... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.