Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Indian Spice Ingredient Kills Cancer Cells

By BiotechDaily International staff writers
Posted on 10 Nov 2009
A new study has revealed that curcumin, a compound found in the spice Turmeric, kills esophageal cancer cells in the laboratory via an unforeseen cell-death mechanism.

Researchers at University College Cork (UCC, Ireland) found that curcumin treatment of an esophageal cancer cell line reduced the viability of all cells within 24 hours of treatment. Since the common path of cell death is apoptosis--a cell suicide path triggered by proteins called caspases--the researchers added a molecule that stops the caspases triggering apoptosis, and found that it made no difference to the number of cells that died. The curcumin seems to induce cell death by a mechanism that was not reliant on apoptosis induction, and in fact, the cells began to digest themselves. The study was published in the October 28, 2009, issue of the British Journal of Cancer.

"The incidence of esophageal cancer has gone up by more than a half since the 70's, particularly in the Western world, and this is thought to be linked to rising rates of obesity, alcohol intake and reflux disease, so finding ways to both treat and prevent this disease is extremely important,” said study coauthor Professor Gerald O'Sullivan, M.D., Ph.D., who heads the Cork Cancer Research Center (CCRC) at UCC. "The development of natural compounds as chemo-preventative agents is also a very promising area of research.”

Curcumin is the principal curcuminoid of the ginger family (Zingiberaceae); the other two curcuminoids are desmethoxycurcumin and bis-desmethoxycurcumin. The curcuminoids are polyphenols and thus responsible for the yellow color of turmeric, which has been used historically as a component of Indian Ayurvedic medicine since 1900 BCE to treat a wide variety of ailments. A recent study on curcumin effects on cancer stated that curcumin modulates growth of tumor cells through regulation of multiple cell signaling pathways, including the cell proliferation pathway, cell survival pathway, caspase activation pathway, tumor suppressor pathway, death receptor pathway, mitochondrial pathways, and the protein kinase pathway.

Related Links:

University College Cork



Channels

Genomics/Proteomics

view channel
Image: Many molecular biology studies begin with purified DNA and RNA extracted from complex environments such as the human gut (Photo courtesy of Los Alamos [US] National Laboratory).

New Metagenomics Analysis Tool Reduces False Discovery Rates

Genomic researchers recently described a novel new tool for analyzing the complex data generated during DNA screens of mixed populations of organisms such as the human gut microbiome. DNA screening... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

“Softer” Mass Spec Techniques Gain Advantage in Biomarker Discovery

Two mass spectrometry (MS) technologies, MALDI and DESI, are increasing in applications as their effectiveness is established, according to Kalorama Information (New York, NY, USA) in its report “Proteomics Markets for Research and IVD Applications (Mass Spectrometry, Chromatography, Microarrays, Electrophoresis, Immunoassays,... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.