Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Indian Spice Ingredient Kills Cancer Cells

By BiotechDaily International staff writers
Posted on 10 Nov 2009
A new study has revealed that curcumin, a compound found in the spice Turmeric, kills esophageal cancer cells in the laboratory via an unforeseen cell-death mechanism.

Researchers at University College Cork (UCC, Ireland) found that curcumin treatment of an esophageal cancer cell line reduced the viability of all cells within 24 hours of treatment. Since the common path of cell death is apoptosis--a cell suicide path triggered by proteins called caspases--the researchers added a molecule that stops the caspases triggering apoptosis, and found that it made no difference to the number of cells that died. The curcumin seems to induce cell death by a mechanism that was not reliant on apoptosis induction, and in fact, the cells began to digest themselves. The study was published in the October 28, 2009, issue of the British Journal of Cancer.

"The incidence of esophageal cancer has gone up by more than a half since the 70's, particularly in the Western world, and this is thought to be linked to rising rates of obesity, alcohol intake and reflux disease, so finding ways to both treat and prevent this disease is extremely important,” said study coauthor Professor Gerald O'Sullivan, M.D., Ph.D., who heads the Cork Cancer Research Center (CCRC) at UCC. "The development of natural compounds as chemo-preventative agents is also a very promising area of research.”

Curcumin is the principal curcuminoid of the ginger family (Zingiberaceae); the other two curcuminoids are desmethoxycurcumin and bis-desmethoxycurcumin. The curcuminoids are polyphenols and thus responsible for the yellow color of turmeric, which has been used historically as a component of Indian Ayurvedic medicine since 1900 BCE to treat a wide variety of ailments. A recent study on curcumin effects on cancer stated that curcumin modulates growth of tumor cells through regulation of multiple cell signaling pathways, including the cell proliferation pathway, cell survival pathway, caspase activation pathway, tumor suppressor pathway, death receptor pathway, mitochondrial pathways, and the protein kinase pathway.

Related Links:

University College Cork



view channel
Image: A new catalyst that improved the sensitivity of the standard PSA ELISA test by about 110-fold was made of palladium nanocubes coated with iridium (Photo courtesy of Dr. Xiaohu Xia, Michigan Technological University).

Peroxidase Mimic Outperforms Natural Horseradish Peroxidase in ELISA Test

A test-of-concept study demonstrated that a synthetic catalyst that mimics the action of horseradish peroxidase (HRP) could increase the sensitivity of a colorimetric enzyme-linked immunosorbent assay... Read more

Drug Discovery

view channel
Image: Endoscopic image of a bowel section known as the sigmoid colon afflicted with ulcerative colitis. The internal surface of the colon is blotchy and broken in places (Photo courtesy of Wikimedia Commons).

Orally Delivered Curcumin-Loaded Microparticles Effectively Treat Mouse Model of Ulcerative Colitis

Microparticles (MPs) loaded with the efficient anti-inflammatory agent curcumin were found to effectively treat a mouse model of ulcerative colitis. Ulcerative colitis is a chronic relapsing disease... Read more


view channel

Biopharmaceutical Partners Seek Alternatives to Glucocorticoid Steroid Drugs

Collaboration between American and Japanese biopharmaceutical companies is expected to lead to the development of a new class of small molecule drugs for treatment of hematological and inflammatory diseases. Gencia LLC (Charlottesville, VA, USA) and Takeda Pharmaceutical Company Ltd. (Osaka, Japan) announced the formation... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.