We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Plasmonic Resonance Optical Microscope Has Capability of an Electron Microscope

By LabMedica International staff writers
Posted on 02 Aug 2016
Print article
Image: The diagram shows the difference between regular and plasmonic gratings in terms of fluorescent intensity (Photo courtesy of Dr. Shubhra Gangopadhyay, University of Missouri).
Image: The diagram shows the difference between regular and plasmonic gratings in terms of fluorescent intensity (Photo courtesy of Dr. Shubhra Gangopadhyay, University of Missouri).
A novel, relatively low cost microscopy technique enables an optical fluorescent microscope to display images with the resolution of an electron microscope.

Super-resolution imaging has advanced the study of biological and chemical systems, but the required equipment and platforms are expensive and unable to observe single-molecules at the high fluorescent dye concentrations required to study protein interactions and enzymatic activity.

In a notable advance in this area, investigators at the University of Missouri (Columbia, USA) designed a plasmonic platform that utilized an inexpensively fabricated plasmonic grating in combination with a scalable glancing angle deposition (GLAD) technique using physical vapor deposition.

Plasmonic resonance is a phenomenon that occurs when light is reflected off thin metal films, which may be used to measure interaction of biomolecules on the surface. An electron charge density wave arises at the surface of the film when light is reflected at the film under specific conditions. A fraction of the light energy incident at a defined angle can interact with the delocalized electrons in the metal film (plasmon) thus reducing the reflected light intensity. The angle of incidence at which this occurs is influenced by the refractive index close to the backside of the metal film, to which target molecules are immobilized. If ligands in a mobile phase running along a flow cell bind to the surface molecules, the local refractive index changes in proportion to the mass being immobilized. This can be monitored in real time by detecting changes in the intensity of the reflected light.

The investigators described the imaging system in the June 28, 2016, issue of the journal Nanoscale. They reported that the GLAD technique created an abundance of plasmonic nano-protrusion probes that combined the surface plasmon resonance (SPR) from the periodic gratings with the localized SPR of these nano-protrusions. The resulting platform enabled simultaneous imaging of a large area without point-by-point scanning or bulk averaging for the detection of single Cyanine-5 dye molecules using epifluorescence microscopy. The new system was able to resolve grain sizes down to 65 nanometers, a resolution normally obtained only by electron microscopes.

“Usually, scientists have to use very expensive microscopes to image at the sub-microscopic level,” said senior author Dr. Shubra Gangopadhyay, professor of electrical and computer engineering at the University of Missouri. “The techniques we have established help to produce enhanced imaging results with ordinary microscopes. The relatively low production cost for the platform also means it could be used to detect a wide variety of diseases, particularly in developing countries.”

“In previous studies, we have used plasmonic gratings to detect cortisol and even tuberculosis,” said Dr. Gangopadhyay. “Additionally, the relatively low production cost for the platform also means it could be used to further detect a wide variety of diseases, particularly in developing countries. Eventually, we might even be able to use smartphones to detect disease in the field.”

Related Links:
University of Missouri


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.