Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Nanoparticle Traps Represent a Radical New Method for Treating Viral Infections

By BiotechDaily International staff writers
Posted on 20 Jan 2014
Image: Virus-infected cells after treatment with Vecoy nanoparticles (indicated by arrows) (Photo courtesy of Vecoy Nanomedicines).
Image: Virus-infected cells after treatment with Vecoy nanoparticles (indicated by arrows) (Photo courtesy of Vecoy Nanomedicines).
An Israeli biotechnology start-up company is researching a radically different approach to the problem of preventing and curing viral infections.

Traditional drug treatment attempts to destroy viruses after they already have invaded host cells and caused significant damage by initiating the disease process (fever, nausea, diarrhea, etc.) in the infected individual. A radically new approach to cure viral infections is under development at Vecoy Nanomedicines (Kiryat Ono, Israel).

The Vecoy (a virus decoy) is an artificial nanoparticle coated with viral receptors. The virus reacts to the nanoparticle in the same way it would to a normal target cell, but once trapped inside, it is immobilized and prevented from spreading the infection. Thus, the Vecoy technology successfully addresses the two major challenges of current medication, namely, virus resistance to treatment and toxicity effects.

Results of cell-culture and preclinical studies in Vecoy’s laboratories demonstrate neutralization of 97% percent of viruses in culture with efficacy expected to rise as the technique is refined. The method is patent pending and funding is being secured to conduct animal trials.

“Viruses are one of the most polymorphic and resilient organisms out there,” said Dr. Erez Livneh, CEO of Vecoy Nanomedicines. “They are rapidly changing, and can change anything in their genome, either by changing their exterior so our immune system would not recognize them or by changing their enzymes so that the handful of drugs we have will not affect them anymore. With the current state of overpopulation of our planet and international flights, we are now prone more than ever before to new viral pandemics which will be very hard to contain, and it is just a matter of time. We had better be in a position where we can do something about it.”

Related Links:

Vecoy Nanomedicines



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.