We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Multitiered Molecular Control Mechanism Regulates T-cell Genetic Switch

By LabMedica International staff writers
Posted on 27 Jul 2016
Print article
Image: Cells labeled to identify proteins that regulate the expression of a genetic switch for T-cells. On the right, T-cells where the switch is activated glow in yellow. On the left, the rainbow pattern, a hierarchical cluster analysis, tells investigators which genes are controlled by the switch. The horizontal stripes are the genes. If they stripes turn red going from left to right, it means they are turning on; if they turn blue, the genes are turning off (Photo courtesy of the California Institute of Technology).
Image: Cells labeled to identify proteins that regulate the expression of a genetic switch for T-cells. On the right, T-cells where the switch is activated glow in yellow. On the left, the rainbow pattern, a hierarchical cluster analysis, tells investigators which genes are controlled by the switch. The horizontal stripes are the genes. If they stripes turn red going from left to right, it means they are turning on; if they turn blue, the genes are turning off (Photo courtesy of the California Institute of Technology).
Three distinct molecular processes act in a stage-specific manner to provide a multitiered system for regulating the T-cell developmental gene BCL11B (B-cell CLL/Lymphoma 11B).

During T-cell development, multipotent progenitors commit to the T-cell lineage by turning on the BCL11B gene, which encodes a transcription factor. To identify the factors responsible for controlling the commitment mechanism, investigators at the California Institute of Technology (Pasadena, USA) followed developing T-cells at the single-cell level using mice genetically engineered to express a fluorescent protein in addition to their own Bcl11b protein. This caused the mouse cells to glow under the fluorescent microscope when the BCL11B gene was activated.

Results published in the July 4, 2016, online edition of the journal Nature Immunology revealed that a group of four protein transcription factors cooperated in a series of multi-tiered steps to regulate the T-cell genetic switch.

Initially, the proteins HNF1 homeobox A (HNF1A; also known as TCF1) and GATA binding protein 3 (GATA3) performed an early locus "poising" function, which paved the way for the activation step. Next, Notch protein signaling activated BCL11B. The fourth protein, Runt-related transcription factor 1 (Runx1) controlled the amplitude of the signal.

"We identify the contributions of four regulators of BCL11B, which are all needed for its activation but carry out surprisingly different functions in enabling the gene to be turned on," said senior author Dr. Ellen Rothenberg, professor of biology at the California Institute of Technology. "It is interesting - the gene still needs the full quorum of transcription factors, but we now find that it also needs them to work in the right order. This makes the gene respond not only to the cell's current state, but also to the cell's recent developmental history."

Related Links:
California Institute of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.