We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Radiation Oncology Drug Platform Oxygenates Tumors Cells to Make Them More Sensitive to Therapy

By LabMedica International staff writers
Posted on 12 Nov 2014
Print article
Image: Local drug delivery oxygenates tumor cells to reverse hypoxia and sensitizes them to therapy (Photo courtesy of Sanovas).
Image: Local drug delivery oxygenates tumor cells to reverse hypoxia and sensitizes them to therapy (Photo courtesy of Sanovas).
A new patent has been issued for photodynamic therapy (PDT) for tumors with a localized delivery technique, which offers broad protection for new systems and methods for reversing hypoxia in therapy-resistant tumors, and for delivering combination therapy to peripheral tumors, specifically lung cancer.

The drug/device system is designed to reduce, if not eliminate, the systemic toxicity and side effects associated with conventional chemotherapy and radiation treatment. The precision therapy technology incorporates direct visualization and local/regional drug infusion with photodynamic radiation and real-time treatment analytics to offer the clinician an objective, evidence-based approach to targeted radiation oncology. The patent was secured by Sanovas, Inc. (San Rafael, CA, USA), a life-science company involved in development and commercialization of next-generation microinvasive diagnostics, devices, and drug delivery technologies.

“Treatment of peripheral lung tumors is growing more relevant given the increased burden of cases as lung cancer screening becomes mainstream,” said Gordon H. Downie, MD, PhD, FCCP, a pulmonologist at Northeast Texas Interventional Medicine (Mount Pleasant, TX, USA), and a clinical adviser to Sanovas. “Challenges facing the clinician include protecting lung function in patients with already compromised abilities, optimal targeting of therapy to avoid serious injury to normal structures, real-time confirmation of clinical effectiveness, non-mutagenic or carcinogenic tumorcidal agents, and the ability to assess for tissue hypoxia. Locally/regionally delivered and activated photodynamic therapy can address all these challenges,” added Dr. Downie, who is also widely recognized as one of the foremost authorities on the use of PDT in the lungs.

One of the most common problems encountered during radiation therapy of malignant tumors, according to Dr. Downey, is that the tumor cells become deficient in oxygen. This system addresses the hypoxia dilemma, he reported. As a long-time proponent of using PDT technology to address peripheral lung tumors, Dr. Downey excited by the potential this approach could lead to, and he look forward to seeing clinical research to validate the potential this patent suggests.

“We want to avoid ‘snake oil’ promises for alternative oncologic agents, but peripheral PDT with local/regional assessment and drug-treatment delivery appears to adequately address all of these concerns,” continued Dr. Downie. “First, a directly observed delivery system ensures a concentration gradient favoring tumor kill over normal structure side effects. Second, the biochemical PDT reaction allows direct correlation of drug consumption with clinical real-time response. Because oxygen is also required for the PDT reaction, drug consumption can act as a surrogate marker for tissue oxygenation. Third, in my experience, I have never seen a primary lung tumor or any metastatic tumor to the lung be resistant to the PDT tumorcidal effect, and the reaction is neither mutanegenic or carcinogenic.”

At the center of the Sanovas companies’ scientific developments is the miniaturization of tools for minimally invasive surgery (MIS). The company’s products enable clinicians to detect and perform therapeutic interventions in spaces as small as 1 mm in diameter that have earlier been inaccessible. Sanovas expects to market the technology in coordination with its various partners to address unmet clinical needs in oncology, pulmonology, cardiology, neurosurgery, ear, nose, and throat (ENT), gastrointestinal (GI), general surgery, urology, and gynecology.

“There is a significant unmet clinical need for a method of treating hypoxic malignant tumors that is capable of delivering an oxygenating agent directly to target tumor tissue within a bodily cavity in order to achieve more precise and efficient oxygenation of the target tumor site, as well as to avoid exposing the surrounding healthy tissue to potentially damaging chemical agents,” said Larry Gerrans, the developer, founder, president and CEO of Sanovas. “This is especially promising for Lung Cancer, which is among the most recalcitrant cancers in the world and, by far, the deadliest of all. The PDT patent represents a milestone event toward a more targeted and less-invasive treatment for cancer and one that promises to mitigate the deleterious side effects of cancer treatment that we have become all too familiar with.”

Related Links:

Sanovas


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Reagent Reservoirs
Reagent Reservoirs

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.