We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Electron Microscopy Advance Rebuilds Third Dimension from Just One Image

By LabMedica International staff writers
Posted on 30 Sep 2014
Print article
Image: From the electron microscope image of nanocrystals—here, a magnesium oxide nanocrystal— below, the three-dimensional structure is reconstructed with atomic precision using a new method developed by researchers from Jülich and Xi’an. The red spheres represent magnesium, the blue, oxygen (Photo courtesy of Forschungszentrum Jülich).
Image: From the electron microscope image of nanocrystals—here, a magnesium oxide nanocrystal— below, the three-dimensional structure is reconstructed with atomic precision using a new method developed by researchers from Jülich and Xi’an. The red spheres represent magnesium, the blue, oxygen (Photo courtesy of Forschungszentrum Jülich).
Scientists have developed a new nanotechnology strategy with which crystal structures can be reconstructed with atomic precision in all three dimensions (3D).

Researchers have used an image from an ultrahigh resolution electron microscope. The process is also especially suitable for the spatial mapping of radiation-sensitive samples, which would be quickly destroyed by the high energy measurement beam. The results were published on September 21, 2014, in the scientific journal Nature Materials.

A key feature of nanoparticles is that they differ from other types of substances in that their surface determines their physical and technical properties to a much larger degree. The effectiveness of catalysts, for instance, depends mostly on the shape of the materials used and their surface texture. For this reason, physicists and material scientists are interested in being able to determine the structure of nanomaterials from all angles and through several layers, right down to the last atom.

Until now, it was necessary to perform a whole series of tests from different angles to achieve this. However, scientists from the Forschungszentrum Jülich (Jülich Research Center; Jülich, Germany), the Jülich’s Ernst Ruska-Center for Microscopy and Spectroscopy with Electrons (ER-C), and Xi'an Jiaotong University (Xi'an, Shaanxi, China) have now succeeded for the first time in calculating the spatial arrangement of the atoms from just one image from an electron microscope.

Their approach offers many benefits: radiation-sensitive samples can also be examined, which would otherwise be rapidly damaged by the microscope’s high-energy electron beam. The comparatively short data acquisition time involved could even make it possible in the future to see the transient intermediate steps of chemical reactions. Furthermore, it enables a “gentle” measurement procedure to take place, to detect not only heavy but also light chemical elements, such as oxygen, which have a vital function in many technologically important materials.

“Acquiring three-dimensional information from a single two-dimensional image seems impossible at first glance. Nevertheless, it is in fact possible: we don’t obtain a simple two-dimensional projection of the three-dimensional sample as the experiment follows quantum mechanical principles instead,” explained Prof. Chunlin Jia, a researcher from the Jülich Peter Grünberg Institute, in microstructure research (PGI-5), the ER-C and at Jiaotong University. “On its way through the crystal lattice, the electron wave of the microscope acts as a highly sensitive atom detector and is influenced by each individual atom. The key point is that it does actually make a difference whether the wave front encounters an atom at the beginning or at the end of its pathway through the crystal.”

For the new 3D measuring process, a thin crystalline sample, in this instance, magnesium oxide, is positioned in the microscope so that the atoms at the intersections of the crystal lattice lie precisely on top of one another, forming columns along the observation axes. These atom columns are later only visible as bright spots on the microscopic image. A special imaging mode is used to improve the signal-to-noise ratio. In this way, subtle variations are visible, which show the researchers the location of individual atoms in the columns along the beam direction.

To reconstruct the spatial structure, the scientists compared the image with calculations constructed on a computer. The computer simulations provide an idea of how a microscopic image of a completely flat magnesium oxide crystal would look. After this, they matched up the model crystal step by step until the reconstructed figure corresponds optimally with the image from the electron microscope.

To validate the findings, the scientists performed comprehensive statistical tests. These revealed that the strategy is not only sensitive enough to identify each individual atom, but also to distinguish between the magnesium and oxygen elements of the crystal.

Related Links:

Forschungszentrum Jülich
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons 
Xi'an Jiaotong University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.