Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Evaluating Chitosan Nerve Conduits That Bridge Sciatic Nerve Defects Visualized Using Ultrasound Imaging

By BiotechDaily International staff writers
Posted on 27 Aug 2014
Image: Ultrasound image of the morphology of a chitosan nerve conduit in a rat model of sciatic nerve defects at three weeks after modeling (Photo courtesy of Neural Regeneration Research journal).
Image: Ultrasound image of the morphology of a chitosan nerve conduit in a rat model of sciatic nerve defects at three weeks after modeling (Photo courtesy of Neural Regeneration Research journal).
The first use of ultrasound has been used by Chinese researchers to noninvasively observe the changes in chitosan nerve conduits implanted in lab rats over time.

The investigators reported that newer, simpler, and more effective ways are needed to better assess the outcomes of repair using nerve conduits in vivo. The new technology distinctly revealed whether there are unsatisfactory complications after implantation, such as fracture, collapse, bleeding, or unusual swelling of the nerve conduits; and reflected the degradation mode of the nerve conduit in vivo over time.

Ultrasound is a common noninvasive clinical detection modality that has been used in many fields. However, ultrasound has seldom been used to observe implanted nerve conduits in vivo.

Dr. Hongkui Wang and coworkers from Affiliated Hospital of Nantong University (Nantong, Jiangsu Province, China) reported on their findings July 15, 2014, in the journal Neural Regeneration Research. Ultrasound, as a noninvasive imaging modality, they noted, can be used as a supplementary observation technique during standard animal research on peripheral nerve tissue engineering.

Related Links:

Affiliated Hospital of Nantong University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.