We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Acoustic Pressure Helps Deliver Drugs to the Brain

By HospiMedica International staff writers
Posted on 26 Aug 2014
Print article
Image: Fluorescence images of the murine hippocampus after diffusion of Dextran through the FUS opened BBB (Left), compared to contralateral that shows no uptake (Right) (Photo courtesy of Dr. Elisa Konofagou/ Columbia University).
Image: Fluorescence images of the murine hippocampus after diffusion of Dextran through the FUS opened BBB (Left), compared to contralateral that shows no uptake (Right) (Photo courtesy of Dr. Elisa Konofagou/ Columbia University).
A new technique uses a focused ultrasound (FUS) beam to control the size of molecules penetrating the blood-brain barrier (BBB).

Researchers at Columbia University (New York, NY, USA) conducted a study that applied FUS onto a mouse hippocampus in the presence of systemically administered microbubbles (MBs) containing fluorescently labeled dextrans with molecular weights of 3-2,000 kDa (2.3–54.4 nm in diameter), to examine the possibility of trans-BBB dextran delivery. Outcomes were evaluated using ex vivo fluorescence imaging, and cavitation detection was employed to concomitantly monitor the MB activity associated with the delivery of the dextrans.

The results showed that FUS-induced BBB opening size—defined by the size of the largest molecule that can permeate through the BBB—can be controlled by acoustic pressure. BBB opening size was smaller than 3 kDa (2.3 nm) at 0.31 MPa, reached 70 kDa (10.2 nm) at 0.51 MPa, and was as large as 2,000 kDa (54.4 nm) at 0.84 MPa. Relatively smaller opening size (up to 70 kDa) was achieved with stable cavitation only; however, inertial cavitation was associated with relatively larger BBB opening size (above 500 kDa). The study was published in the July 2014 issue of the Journal of Cerebral Blood Flow & Metabolism.

“Most small and all large molecule drugs do not currently penetrate the blood-brain barrier that sits between the vascular bed and the brain tissue,” said study coauthor professor of biomedical engineering and radiology Elisa Konofagou, PhD, of Columbia Engineering. “This is an important breakthrough in getting drugs delivered to specific parts of the brain precisely, noninvasively, and safely, and may help in the treatment of central nervous system diseases like Parkinson's and Alzheimer's.”

FUS in conjunction with MBs—gas-filled bubbles coated by protein or lipid shells—is so far the only technique can permeate the BBB safely and noninvasively. When MBs are hit by an FUS beam, they start oscillating due to cavitation, the formation of vapor cavities in the liquid phase; depending on the magnitude of the pressure, they continue oscillating or collapse. The study showed that the pressure of the FUS can be adjusted depending on the size of the drug that needs to be delivered to the brain - small molecules at lower pressures and larger molecules at higher pressures.

Related Links:

Columbia University


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Stereotactic Ultralight System
SUSy

Print article

Channels

Surgical Techniques

view channel
Image: NTT and Olympus have begun the world\'s first joint demonstration experiment of a cloud endoscopy system (Photo courtesy of Olympus)

Cloud Endoscopy System Enables Real-Time Image Processing on the Cloud

Endoscopes, which are flexible tubes inserted into the body's natural openings for internal examination and biopsy collection, are becoming increasingly vital in medical diagnostics. Their minimal invasiveness... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.