Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

X-Ray Imaging System Enables Scientists to See in Real Time How Effective Treatments are for Cystic Fibrosis

By BiotechDaily International staff writers
Posted on 25 Aug 2014
Image: Dr. Kaye Morgan, Monash University (Photo courtesy of Monash University).
Image: Dr. Kaye Morgan, Monash University (Photo courtesy of Monash University).
A new imaging approach allows researchers to monitor the effectiveness of a treatment for the life-threatening genetic disorder.

Cystic fibrosis affects many of the body’s systems, but most severely the lungs, and currently it can take several months to measure how effective treatment is for the early-fatal lung disease.

Dr. Kaye Morgan, from Monash University (Melbourne; VIC, Australia), and lead researcher of the study, reported that the new X-ray imaging strategy allows researchers to visualize soft tissue structures, for example, the airways, brain, and lungs, which are effectively hidden in standard X-ray images. “At the moment we typically need to wait for a cystic fibrosis treatment to have an effect on lung health, measured by either a lung CT [computed tomography] scan or breath measurement, to see how effective that treatment is,” Dr. Morgan said. “However the new imaging technique allows us for the first time to noninvasively see how the treatment is working ‘live’ on the airway surface.”

Dr. Morgan noted that this X-ray imaging method would enable clinicians and researchers to measure how effective treatments are, and progress new treatments to the clinic at a much quicker rate, a key goal of the investigators. “Because we will be able to see how effectively treatments are working straight away, we’ll be able to develop new treatments a lot more quickly, and help better treat people with cystic fibrosis,” Dr. Morgan said.

Dr. Morgan noted that the new imaging technology, which was developed using a synchrotron X-ray source, may also create new avenues for assessing how effective treatments were for other lung, heart, and brain diseases.

The study’s findings were published August 15, 2014, in the American Journal of Respiratory and Critical Care Medicine.

Related Links:

Monash University



Channels

Genomics/Proteomics

view channel
Image: The bone marrow of mice with normal ether lipid production (top) contains more white blood cells than are found in the bone marrow of mice with ether lipid deficiency (bottom) (Photo courtesy of Washington University School of Medicine).

Inactivating Fatty Acid Synthase Reduces Inflammation by Interfering with Neutrophil Membrane Function

The enzyme fatty acid synthase (FAS) was shown to regulate inflammation by sustaining neutrophil viability through modulation of membrane phospholipid composition. Neutrophils are the most abundant... Read more

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.