Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

X-Ray Imaging System Enables Scientists to See in Real Time How Effective Treatments are for Cystic Fibrosis

By BiotechDaily International staff writers
Posted on 25 Aug 2014
Print article
Image: Dr. Kaye Morgan, Monash University (Photo courtesy of Monash University).
Image: Dr. Kaye Morgan, Monash University (Photo courtesy of Monash University).
A new imaging approach allows researchers to monitor the effectiveness of a treatment for the life-threatening genetic disorder.

Cystic fibrosis affects many of the body’s systems, but most severely the lungs, and currently it can take several months to measure how effective treatment is for the early-fatal lung disease.

Dr. Kaye Morgan, from Monash University (Melbourne; VIC, Australia), and lead researcher of the study, reported that the new X-ray imaging strategy allows researchers to visualize soft tissue structures, for example, the airways, brain, and lungs, which are effectively hidden in standard X-ray images. “At the moment we typically need to wait for a cystic fibrosis treatment to have an effect on lung health, measured by either a lung CT [computed tomography] scan or breath measurement, to see how effective that treatment is,” Dr. Morgan said. “However the new imaging technique allows us for the first time to noninvasively see how the treatment is working ‘live’ on the airway surface.”

Dr. Morgan noted that this X-ray imaging method would enable clinicians and researchers to measure how effective treatments are, and progress new treatments to the clinic at a much quicker rate, a key goal of the investigators. “Because we will be able to see how effectively treatments are working straight away, we’ll be able to develop new treatments a lot more quickly, and help better treat people with cystic fibrosis,” Dr. Morgan said.

Dr. Morgan noted that the new imaging technology, which was developed using a synchrotron X-ray source, may also create new avenues for assessing how effective treatments were for other lung, heart, and brain diseases.

The study’s findings were published August 15, 2014, in the American Journal of Respiratory and Critical Care Medicine.

Related Links:

Monash University



Print article

Channels

Genomics/Proteomics

view channel
Image: Top: Overview of the structure of T-STAR STAR domain in complex with AUUAAA RNA. Bottom left: close up view of the specific recognition of the RNA. Bottom right: close up view of the KH dimerization interface (Photo courtesy of the University of Leicester).

Atomic Structures of Alternative Splicing Regulator Proteins May Lead to New Anticancer Drugs

A detailed structural analysis of two RNA-binding proteins that regulate alternate splicing of gene expression, which can lead to various types of cancer, is expected to aid in the development of drugs... Read more

Drug Discovery

view channel
Image: Naturally occurring clay from Kisameet Bay, Canada, exhibits potent antibacterial activity against multidrug-resistant pathogens (Photo courtesy of Kisameet Glacial Clay Inc.).

Antibiotic Resistant Bacteria Succumb to Treatment with Unique Natural Clay

A team of Canadian medical microbiologists has demonstrated the potential use of a unique type of natural clay for treating pathogenic bacteria that have become resistant to the commonly used antibiotics.... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.