Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

X-Ray Imaging System Enables Scientists to See in Real Time How Effective Treatments are for Cystic Fibrosis

By BiotechDaily International staff writers
Posted on 25 Aug 2014
Image: Dr. Kaye Morgan, Monash University (Photo courtesy of Monash University).
Image: Dr. Kaye Morgan, Monash University (Photo courtesy of Monash University).
A new imaging approach allows researchers to monitor the effectiveness of a treatment for the life-threatening genetic disorder.

Cystic fibrosis affects many of the body’s systems, but most severely the lungs, and currently it can take several months to measure how effective treatment is for the early-fatal lung disease.

Dr. Kaye Morgan, from Monash University (Melbourne; VIC, Australia), and lead researcher of the study, reported that the new X-ray imaging strategy allows researchers to visualize soft tissue structures, for example, the airways, brain, and lungs, which are effectively hidden in standard X-ray images. “At the moment we typically need to wait for a cystic fibrosis treatment to have an effect on lung health, measured by either a lung CT [computed tomography] scan or breath measurement, to see how effective that treatment is,” Dr. Morgan said. “However the new imaging technique allows us for the first time to noninvasively see how the treatment is working ‘live’ on the airway surface.”

Dr. Morgan noted that this X-ray imaging method would enable clinicians and researchers to measure how effective treatments are, and progress new treatments to the clinic at a much quicker rate, a key goal of the investigators. “Because we will be able to see how effectively treatments are working straight away, we’ll be able to develop new treatments a lot more quickly, and help better treat people with cystic fibrosis,” Dr. Morgan said.

Dr. Morgan noted that the new imaging technology, which was developed using a synchrotron X-ray source, may also create new avenues for assessing how effective treatments were for other lung, heart, and brain diseases.

The study’s findings were published August 15, 2014, in the American Journal of Respiratory and Critical Care Medicine.

Related Links:

Monash University



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.