Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Evolutionary Changes Reproduced in the Lab by Manipulating Embryonic Development of Mice

By BiotechDaily International staff writers
Posted on 18 Aug 2014
Researchers have been able experimentally to reproduce in mice morphologic alterations that have taken millions of years to occur. Through small and gradual modifications in the embryonic development of mice teeth, produced in the laboratory, scientists have obtained teeth that morphologically are very similar to those observed in the fossil registry of rodent species that evolved from mice millions of years ago.

To modify the development of their teeth, the team from the Institute of Biotechnology of the University of Helsinki (Finland) worked with embryonic teeth cultures from mice not coded by the ectodysplasin A (EDA) protein, which regulates the formation of structures and differentiation of organs in the embryo throughout its development. The teeth obtained with these cultures which present this mutation develop into very fundamental forms, with very uniform crowns. Scientists gradually added different amounts of the EDA protein to the embryonic cells and let them develop.

The researchers observed that the teeth formed with different levels of complexity in their crown. The more primitive changes observed coincide with those which took place in animals of the Triassic period, some two hundred million years ago. The development of more posterior patterns corresponds with the different stages of evolution discovered in rodents that already became extinct in the Paleocene Epoch, approximately 60 million years ago. Researchers have therefore achieved the reproduction of the transitions observed in the fossil registry of mammal teeth.

The scientists were able to compare the shape of these teeth with a computer-generated prediction model created by Dr. Isaac Salazar-Ciudad, researcher at the Universitat Autònoma de Barcelona (UAB; Spain) and at the University of Helsinki, which reproduces how the tooth changes from a group of equal cells to a complicated three-dimensional (3D) structure, with the full shape of a molar tooth, computing the position of space of each cell. The model is capable of forecasting the changes in the morphology of the tooth when a gene is engineered, and therefore offers an explanation of the processes that cause these specific alterations to occur in the shape of teeth throughout evolution.

“Evolution has been explained as the ability of individuals to adapt to their environment in different ways,” Dr. Salazar-Ciudad stated, “But we do not know why or how individuals differ morphologically. The research helps to understand evolution, in each generation, as a game between the possible variations in form and natural selection.”

The research findings were published July 30, 2014, in the journal Nature.

Related Links:

Institute of Biotechnology of the University of Helsinki
Universitat Autònoma de Barcelona



view channel
Image: Schematic representation of HIV DART binding to two distinct antigens simultaneously, redirecting the killer T-cells to destroy HIV-1 infected cells (Photo courtesy of Duke University).

Bi-Specific Antibodies Shown to Clear Latent HIV Infections

Bi-specific antibodies or DARTS (dual-affinity re-targeting proteins) have been used to eliminate latent HIV-infection from patient samples by redirecting polyclonal T-cells to specifically engage with... Read more

Drug Discovery

view channel
Image: Use of catchphrase terms like “breakthrough” and “promising” in public news media presenting new drugs tends to result in incorrect assumptions and conclusions about the meaning and significance of criteria for FDA breakthrough-designated and accelerated-approval drugs (Photo courtesy of Dartmouth Institute).

Words That Inappropriately Enhance Perception of New Drug’s Effectiveness

Researchers have found that using the words “breakthrough” and “promising” in presenting a new drug to the general public often has a dramatic effect on judgment about its effectiveness.... Read more


view channel

Sale of Mexican Pharmaceutical Company Expected to Boost Latin American Prescription Drug Market

The sale of a major Mexican pharmaceutical company to an international generic drug corporation is expected to accelerate the growth of the Latin American market for prescription drugs. Teva Pharmaceutical Industries Ltd. (Petah Tikva, Israel) announced that it has entered into definitive agreements to buy Representaciones... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.