Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Evolutionary Changes Reproduced in the Lab by Manipulating Embryonic Development of Mice

By BiotechDaily International staff writers
Posted on 18 Aug 2014
Researchers have been able experimentally to reproduce in mice morphologic alterations that have taken millions of years to occur. Through small and gradual modifications in the embryonic development of mice teeth, produced in the laboratory, scientists have obtained teeth that morphologically are very similar to those observed in the fossil registry of rodent species that evolved from mice millions of years ago.

To modify the development of their teeth, the team from the Institute of Biotechnology of the University of Helsinki (Finland) worked with embryonic teeth cultures from mice not coded by the ectodysplasin A (EDA) protein, which regulates the formation of structures and differentiation of organs in the embryo throughout its development. The teeth obtained with these cultures which present this mutation develop into very fundamental forms, with very uniform crowns. Scientists gradually added different amounts of the EDA protein to the embryonic cells and let them develop.

The researchers observed that the teeth formed with different levels of complexity in their crown. The more primitive changes observed coincide with those which took place in animals of the Triassic period, some two hundred million years ago. The development of more posterior patterns corresponds with the different stages of evolution discovered in rodents that already became extinct in the Paleocene Epoch, approximately 60 million years ago. Researchers have therefore achieved the reproduction of the transitions observed in the fossil registry of mammal teeth.

The scientists were able to compare the shape of these teeth with a computer-generated prediction model created by Dr. Isaac Salazar-Ciudad, researcher at the Universitat Autònoma de Barcelona (UAB; Spain) and at the University of Helsinki, which reproduces how the tooth changes from a group of equal cells to a complicated three-dimensional (3D) structure, with the full shape of a molar tooth, computing the position of space of each cell. The model is capable of forecasting the changes in the morphology of the tooth when a gene is engineered, and therefore offers an explanation of the processes that cause these specific alterations to occur in the shape of teeth throughout evolution.

“Evolution has been explained as the ability of individuals to adapt to their environment in different ways,” Dr. Salazar-Ciudad stated, “But we do not know why or how individuals differ morphologically. The research helps to understand evolution, in each generation, as a game between the possible variations in form and natural selection.”

The research findings were published July 30, 2014, in the journal Nature.

Related Links:

Institute of Biotechnology of the University of Helsinki
Universitat Autònoma de Barcelona



WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Mosquitoes are known to infect people and animals with West Nile virus. Studying West Nile virus infection in mice, researchers have shown that the antiviral compound interferon-lambda tightens the blood-brain barrier, making it harder for the virus to invade the brain (Photo courtesy of the CDC – [US] Centers for Disease Control and Prevention).

Interferon-Lambda Prevents West Nile Virus from Crossing the Blood-brain Barrier

The cytokine interferon-lambda prevents West Nile virus from infecting brain cells by reducing transport of large molecules across the blood-brain barrier. Although interferon-lambda [also known as... Read more

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.