Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Research Lab to Develop World’s First Neural Device to Restore Memory

By BiotechDaily International staff writers
Posted on 04 Aug 2014
Image: Lawrence Livermore National Laboratory (LLNL) will develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory (Photo courtesy of DOE/Lawrence Livermore National Laboratory).
Image: Lawrence Livermore National Laboratory (LLNL) will develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory (Photo courtesy of DOE/Lawrence Livermore National Laboratory).
A USD 2.5 million grant has been awarded to a US research lab to develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory.

The US Department of Defense’s Defense Advanced Research Projects Agency (DARPA) awarded the grant to Lawrence Livermore National Laboratory (LLNL; Livermore, CA, USA). The research builds on the knowledge that memory is a process in which neurons in specific regions of the brain encode information, store it, and retrieve it. Specific types of disorders and injuries, including traumatic brain injury (TBI), Alzheimer’s disease, and epilepsy, disrupt this process and cause memory loss. TBI, specifically, has affected 270,000 military service members since 2000.

The objective of LLNL’s research initiated by LLNL’s Neural Technology group and undertaken in collaboration with the University of California, Los Angeles (UCLA; USA) and Medtronic (Minneapolis, MN, USA) is to develop a device that uses real-time recording and closed-loop stimulation of neural tissues to bridge gaps in the injured brain and restore individuals’ ability to form new memories and access previously formed ones.

The research is funded by DARPA’s Restoring Active Memory (RAM) program. Specifically, the neural technology group are trying to develop a neuromodulation system, an advanced electronics system to modulate neurons, which will investigate areas of the brain associated with memory to understand how new memories are formed. The device will be developed at LLNL’s Center for Bioengineering.

“Currently, there is no effective treatment for memory loss resulting from conditions like TBI,” said LLNL’s project leader Dr. Satinderpall Pannu, director of the LLNL’s Center for Bioengineering, a unique facility dedicated to fabricating biocompatible neural interfaces. “This is a tremendous opportunity from DARPA to leverage Lawrence Livermore’s advanced capabilities to develop cutting-edge medical devices that will change the health care landscape.”

LLNL engineers will devise a miniature, wireless and chronically implantable neural device that will incorporate both single neuron and local field potential recordings into a closed-loop system to implant into TBI patients’ brains. The device implanted into the entorhinal cortex and hippocampus will allow for stimulation and recording from 64 channels located on two high-density electrode arrays. The entorhinal cortex and hippocampus are brain regions associated with memory.

The arrays will connect to an implantable electronics bundle capable of wireless data and power telemetry. An external electronic system worn around the ear will store digital information associated with memory storage and retrieval and provide power telemetry to the implantable package using a custom radiofrequency (RF) coil system.

The device’s electrodes will be integrated with electronics using advanced LLNL integration and 3D packaging technologies, and are designed to last throughout the duration of treatment. The microelectrodes that are the heart of this device are embedded in a biocompatible, flexible polymer. Using the Center for Bioengineering’s capabilities, Dr. Pannu and his team of engineers have achieved 25 patents and many publications during the last 10 years. The team's goal is to build the new prototype device for clinical testing by 2017.

Lawrence Livermore’s collaborators, UCLA and Medtronic, will focus on conducting clinical trials and creating parts and components, respectively. “The RAM program poses a formidable challenge reaching across multiple disciplines from basic brain research to medicine, computing and engineering,” said Itzhak Fried, lead investigator for the UCLA on this project and professor of neurosurgery and psychiatry and biobehavioral sciences at the David Geffen School of Medicine at UCLA and the Semel Institute for Neuroscience and Human Behavior. “But at the end of the day, it is the suffering individual, whether an injured member of the armed forces or a patient with Alzheimer’s disease, who is at the center of our thoughts and efforts.”

LLNL’s work on the Restoring Active Memory program supports President Obama’s Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative. “Our years of experience developing implantable microdevices, through projects funded by the Department of Energy [DOE], prepared us to respond to DARPA’s challenge,” said Lawrence Livermore engineer Kedar Shah, a project leader in the neural technology group.

Related Links:

Lawrence Livermore National Laboratory
University of California, Los Angeles 
Medtronic



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: The new peptide offers a triple hormone effect in a single-cell molecule (Photo courtesy of Indiana University).

Tripeptide Drug Effectively Controls Metabolic Syndrome in Rodent Model

Promising results in reducing obesity and normalizing glucose metabolism obtained with a synthetic dipeptide drug have been enhanced by the addition of a molecule of a third hormone, glucagon.... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.