Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Chemical Test Detects Counterfeit Malaria Drugs

By BiotechDaily International staff writers
Posted on 04 Aug 2014
Image: The Artesunate Field Test Kit (Photo courtesy of Oregon State University).
Image: The Artesunate Field Test Kit (Photo courtesy of Oregon State University).
A rapid, inexpensive and simple colorimetric-based testing kit for the detection of counterfeit anti-malaria drugs has been developed in order to preserve life and prevent the development of multidrug resistant malaria.

The assay is based on paper microfluidics which offers several advantages over conventional microfluidics, and has great potential to generate inexpensive, easy-to-use, rapid and disposable diagnostic devices and when widely used it could help save hundreds of thousands of lives.

Chemists at the Oregon State University (Corvallis, OR, USA) fabricated a microchip using Whatman filter paper or glass microfiber GF/B (Sigma Aldrich; St. Louis, MO,USA). The filter paper is cut into circular test pads using an 8-mm diameter hole-punch. They designed the paper microchip to enable fluid transport vertically by stacking the paper test pads. Each of the paper cut out has been pretreated by spotting them with different reagents and allowed to dry.

The paper test was divided into layers with the appropriate dried reagents, and the easily prepared sample solution will flow through the regions via capillary action in order to carry out the artesunate detection test. The artesunate sample can then be applied directly onto the test strip/device for measurement. The color will fully develop within minutes so that the user can determine whether artesunate is present in the drug formulation at a therapeutic dose or not. The kit provides a color-coded chart, similar to that accompanying pH paper, which is used to determine the relative concentration of artesunate in the tablet. The paper-based assay, together with the accompanying color chart provides a reliable semi-quantitative measurement of artesunate in a tablet. The rapid, simple, and inexpensive test is especially useful when used as a screening tool for counterfeits in remote areas.

Color measurement of each chip was obtained by using a camera phone application. A sample was applied to the paper chip and allowed to incubate for five minutes for color development. Analysis of the image was performed by measuring the Red, Green, Blue (RGB) value of each spot, and converted to average gray intensity. A single pill can be crushed, dissolved in water, and when a drop of the solution is placed on the paper, it turns yellow if the drug is present. The intensity of the color indicates the level of the drug, which can be compared to a simple color chart.

Vincent T. Remcho, PhD, a professor of chemistry and senior author of the study said, “There are laboratory methods to analyze medications such as this, but they often are not available or widely used in the developing world where malaria kills thousands of people every year. What we need are inexpensive, accurate assays that can detect adulterated pharmaceuticals in the field, simple enough that anyone can use them and our technology should provide that.” The study was published on June 27, 2014, in the journal Talanta.

Related Links:

Oregon State University
Sigma Aldrich



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.