Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Stereo Microscope Objective Designed for Specimens in Aqueous Solution

By BiotechDaily International staff writers
Posted on 23 Jul 2014
Image: Studying Vascular Development using Zebrafish (somites). Left: without correction. Right: optics adapted to the refractive index of the water column by using the correction ring of the Leica Planapo 2.0x CORR objective (Photo courtesy of Mailin J. Hamm, angiogenesis laboratory, University of Muenster, Germany).
Image: Studying Vascular Development using Zebrafish (somites). Left: without correction. Right: optics adapted to the refractive index of the water column by using the correction ring of the Leica Planapo 2.0x CORR objective (Photo courtesy of Mailin J. Hamm, angiogenesis laboratory, University of Muenster, Germany).
Image: Studying Vascular Development using Zebrafish (eye). Left: without correction. Right: optics adapted to the refractive index of the water column by using the correction ring of the Leica Planapo 2.0x CORR objective (Photo courtesy of Mailin J. Hamm, Angiogenesis Laboratory, University of Muenster, Germany).
Image: Studying Vascular Development using Zebrafish (eye). Left: without correction. Right: optics adapted to the refractive index of the water column by using the correction ring of the Leica Planapo 2.0x CORR objective (Photo courtesy of Mailin J. Hamm, Angiogenesis Laboratory, University of Muenster, Germany).
A new stereo-microscope has been developed specifically for use with specimens immersed in aqueous solution. With this objective, users can obtain pin sharp visualization of specimens with up to a 5-mm water column between the specimen and the objective.

The objective solves a problem many stereo-microscope users have: looking at specimens in aqueous solution deteriorates image quality due to the refractive index mismatch between water and the air surrounding the microscope objective.

As the refractive index can be compensated with the Leica Microsystems (Wetzlar, Germany) Planapo 2.0x CORR objective for the Leica M series, interesting structures cannot be misread because of aberrations. Image quality is further enhanced by the objective’s high numerical aperture of up to 0.35.

Many stereo microscope applications such as zebra fish research, in vitro fertilization, or transgenics require aqueous solution to optimize the preparation process or to keep the specimen alive. Especially at high magnifications this poses an aberration problem, which results in blurred images with lower information content. The Leica Planapo 2.0x CORR objective overcomes this problem with the help of an adjustable correction ring. Turning the ring to the specified position enables users to adapt the optic to the correct refractive index according to the water column above the specimen. If users need to observe specimens in an airy surrounding, they simply return the correction ring to the home position.

“With our new objective we provide a high-quality tool for imaging specimens in liquid solution,” noted Jennifer Horner, product manager for stereo microscopes at Leica Microsystems. “It enables users to observe and document specimens as if the water was not there. So misinterpretations due to optical aberrations with water-immersed specimens are now things of the past. In addition, a numerical aperture of up to 0.35 is an outstanding value for objectives in this category. This, too, considerably boosts image quality.”

A working distance of 20 mm allows for easy access to the specimen. A quick-start guide comes with the microscope and helps users to quickly understand how to use the objective.

Related Links:

Leica Microsystems



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.