Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

X-Ray Crystallography Offers First-Time 3D View of Vital Brain Receptor

By BiotechDaily International staff writers
Posted on 07 Jul 2014
Image: X-ray crystal structure of the NMDA receptor showing its mushroom-like shape, with receptor subunits in different colors (Photo courtesy of Oregon Health & Science University).
Image: X-ray crystal structure of the NMDA receptor showing its mushroom-like shape, with receptor subunits in different colors (Photo courtesy of Oregon Health & Science University).
Researchers have produced a new and extraordinary three-dimensional (3D) view of one of the most important receptors in the brain—a receptor that allows humans to learn and remember, and whose malfunctioning is involved in a wide variety of neurologic disorders, including Alzheimer’s, Parkinson’s, depression, and schizophrenia.

The never-before-seen view provided was published online June 22, 2104, in the journal Nature, and offers new clues into how the receptor, called the N-methyl-D-aspartate (NMDA) receptor, is structured. Moreover, the new detailed view offers vital clues to developing drugs to fight the neurologic diseases and conditions. “This is the most exciting moment of my career,” said Dr. Eric Gouaux, a senior scientist at the Oregon Health & Science University’s Vollum Institute (OHSU; Portland, USA). “The NMDA receptor is one of the most essential, and still sometimes mysterious, receptors in our brain. Now, with this work, we can see it in fascinating detail.”

The NMDA receptor is one of the most significant brain receptors because it helps in neuron communication that is the basis of memory, learning, and thought. Dysfunction of the NMDA receptor occurs when it is more or less active and is tied to a wide range of neurologic disorders and diseases.

Scientists worldwide study the NMDA receptor; some of the most notable discoveries about the receptor during the past 30 years have been made by OHSU Vollum scientists.

The NMDA receptor structure includes receptor subunits, all of which have distinctive characteristics and act in distinct ways in the brain, sometimes causing neurologic difficulties. Before this research, scientists had only an inadequate view of how those subtypes were arranged in the NMDA receptor complex and how they interacted to carry out specific functions within the brain and central nervous system.

The team of scientists created a 3D model of the NMDA receptor through a process called X-ray crystallography. This process throws X-ray beams at crystals of the receptor; a computer calibrates the composition of the structure based on how those X-ray beams spring off the crystals. The resulting 3D model of the receptor, which looks similar to an arrangement of flowers, reveals where the receptor subunits are positioned, and offers unprecedented insights into their actions. “This new detailed view will be invaluable as we try to develop drugs that might work on specific subunits and therefore help fight or cure some of these neurological diseases and conditions,” Dr. Gouaux said. “Seeing the structure in more detail can unlock some of its secrets—and may help a lot of people.”

Related Links:

Oregon Health & Science University’s Vollum Institute



view channel
Image: Micrograph showing immunofluorescence of skin differentiation markers for basal keratinocytes (Photo courtesy of Dr. Russ Carstens, University of Pennsylvania).

Alternate Splicing Proteins Critically Linked to Skin and Organ Development

Two proteins that regulate alternative splicing in epithelial cells have been linked to the proper development of the skin and protective layers that surround other organs in the body. Two steps are... Read more

Drug Discovery

view channel
Image: Use of catchphrase terms like “breakthrough” and “promising” in public news media presenting new drugs tends to result in incorrect assumptions and conclusions about the meaning and significance of criteria for FDA breakthrough-designated and accelerated-approval drugs (Photo courtesy of Dartmouth Institute).

Words That Inappropriately Enhance Perception of New Drug’s Effectiveness

Researchers have found that using the words “breakthrough” and “promising” in presenting a new drug to the general public often has a dramatic effect on judgment about its effectiveness.... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.