Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Muscle-Pacing Technology Found to Increase Targeted Bone Volume by 30%

By BiotechDaily International staff writers
Posted on 02 Jul 2014
Print article
Image: The muscle pacing method used in the study saw the rats gain 30% of bone within the targeted areas (Photo courtesy of the University of Liverpool).
Image: The muscle pacing method used in the study saw the rats gain 30% of bone within the targeted areas (Photo courtesy of the University of Liverpool).
In an important advance for the health of older individuals, researchers have developed a new way to target bone growth. As people age, their bones lose density, and particularly in women after the menopause, become more brittle. The new technique offers the possibility of more effective treatment than currently available. The muscle-pacing technology revealed that the lab rats in the study gained 30% of bone within the targeted areas.

The new technology was developed by researchers from the University of Liverpool’s (UK) Institute of Aging and Chronic Disease. Prof. Jonathan Jarvis, from Liverpool John Moores University designed miniature muscle pacemakers that were used in the University of Liverpool labs to generate contractions in the muscles of the legs of rats over 28 days. University of Liverpool PhD student Paula Vickerton led the research. She said, “Bone disease and fragility are affecting an increasing proportion of our population. However, existing treatments are nonspecific, affecting whole bones and not just the weaker regions.”

Using the muscle-pacing technique, the rats gained 30% of bone within the targeted areas. Ms. Vickerton’s supervisor, Dr. Nathan Jeffery, said, “This method has been shown to increase the amount of bone and raises the possibility of being developed into a treatment for people who are at risk of the many complications that weakened bone can bring.”

The study’s findings were published online and slated for the August 7, 2014 issue of the journal Proceedings of the Royal Society B: Biological Sciences.

Related Links:

University of Liverpool



Print article

Channels

Genomics/Proteomics

view channel
Image: An expression of NOTCH 1 (green color) in ACC stem cells (Photo courtesy of Yale University).

Adenoid Cystic Carcinoma Stem Cells Depend on NOTCH1 and SOX10 Signaling

Cancer researchers have isolated a stem cell population from the cells making up an adenoid cystic carcinoma (ACC) tumor and showed that the signaling factors NOTCH1 and SOX10 were essential for the cancer... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.