Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Muscle-Pacing Technology Found to Increase Targeted Bone Volume by 30%

By BiotechDaily International staff writers
Posted on 02 Jul 2014
Image: The muscle pacing method used in the study saw the rats gain 30% of bone within the targeted areas (Photo courtesy of the University of Liverpool).
Image: The muscle pacing method used in the study saw the rats gain 30% of bone within the targeted areas (Photo courtesy of the University of Liverpool).
In an important advance for the health of older individuals, researchers have developed a new way to target bone growth. As people age, their bones lose density, and particularly in women after the menopause, become more brittle. The new technique offers the possibility of more effective treatment than currently available. The muscle-pacing technology revealed that the lab rats in the study gained 30% of bone within the targeted areas.

The new technology was developed by researchers from the University of Liverpool’s (UK) Institute of Aging and Chronic Disease. Prof. Jonathan Jarvis, from Liverpool John Moores University designed miniature muscle pacemakers that were used in the University of Liverpool labs to generate contractions in the muscles of the legs of rats over 28 days. University of Liverpool PhD student Paula Vickerton led the research. She said, “Bone disease and fragility are affecting an increasing proportion of our population. However, existing treatments are nonspecific, affecting whole bones and not just the weaker regions.”

Using the muscle-pacing technique, the rats gained 30% of bone within the targeted areas. Ms. Vickerton’s supervisor, Dr. Nathan Jeffery, said, “This method has been shown to increase the amount of bone and raises the possibility of being developed into a treatment for people who are at risk of the many complications that weakened bone can bring.”

The study’s findings were published online and slated for the August 7, 2014 issue of the journal Proceedings of the Royal Society B: Biological Sciences.

Related Links:

University of Liverpool



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.