Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Human Proteome Catalog Created for Speeding Research and Diagnostic Development

By BiotechDaily International staff writers
Posted on 30 Jun 2014
An international team of researchers recently created an initial catalog of the human “proteome,” in an effort to provide a protein equivalent of the Human Genome Project. Using 30 different human tissues in total, the scientists identified proteins encoded by 17,294 genes, which is approximately 84% of all of the genes in the human genome predicted to encode proteins.

The project was described May 28, 2014, in the journal Nature, the scientists also reported the identification of 193 novel proteins that came from regions of the genome not expected to code for proteins, suggesting that the human genome is more complicated than earlier believed. The cataloging project, led by researchers at the Johns Hopkins University (Baltimore, MD, USA) and the Institute of Bioinformatics (Bangalore, India; www.ibioinformatics.org), should provide a vital source for biologic research and medical diagnostics, according to the team’s leaders.

“You can think of the human body as a huge library where each protein is a book,” said Akhilesh Pandey, MD, PhD, a professor at the McKusick-Nathans Institute of Genetic Medicine and of biological chemistry, pathology, and oncology at the Johns Hopkins University and the founder and director of the Institute of Bioinformatics. “The difficulty is that we don’t have a comprehensive catalog that gives us the titles of the available books and where to find them. We think we now have a good first draft of that comprehensive catalog.”

Whereas genes determine many of the characteristics of an organism, they do so by providing instructions for creating proteins, the building blocks and taskmasters of cells, and therefore of tissues and organs. For this reason, many investigators believe a catalog of human proteins—and their location within the body—to be even more informative and useful than the catalog of genes in the human genome.

Examining proteins is far more technically problematic than studying genes, Dr. Pandey noted, because the structures and functions of proteins are complex and varied. Furthermore, to just list of existing proteins would not be very helpful without accompanying data about where in the body those proteins are found. Therefore, most protein studies to date have focused on individual tissues, often in the context of specific diseases, he added.

To achieve a more comprehensive survey of the proteome, the researchers started by taking samples of 30 tissues, extracting their proteins and using enzymes like chemical scissors to cut them into smaller pieces, called peptides. They then ran the peptides through a series of instruments designed to figure out their identity and measure their relative abundance. “By generating a comprehensive human protein dataset, we have made it easier for other researchers to identify the proteins in their experiments,” said Dr. Pandey. “We believe our data will become the gold standard in the field, especially because they were all generated using uniform methods and analysis, and state-of-the-art machines.”

Among the proteins whose data patterns have been characterized for the first time are many that were never predicted to exist. The researchers’ most unexpected finding was that 193 of the proteins they identified could be traced back to these apparently noncoding regions of DNA. “This was the most exciting part of this study, finding further complexities in the genome,” remarked Dr. Pandey. “The fact that 193 of the proteins came from DNA sequences predicted to be noncoding means that we don’t fully understand how cells read DNA, because clearly those sequences do code for proteins.”

Dr. Pandey believes that the human proteome is so extensive and complex that researchers’ catalog of it will never be fully complete, but this research provides a solid foundation that others can effectively build upon.

Related Links:

Johns Hopkins University
Institute of Bioinformatics



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This micrograph depicts the presence of aerobic Gram-negative Neisseria meningitidis diplococcal bacteria; magnification 1150x (Photo courtesy of the CDC - US Centers for Disease Control and Prevention).

Infection by Meningitis Bacteria Depends on Dimerization State of Certain Host Cell Proteins

A team of molecular microbiologists has untangled the complex three-way interaction between the non-integrin laminin receptor (LAMR1), galectin-3 (Gal-2), and the pathogenic bacterium Neisseria meningitidis.... Read more

Drug Discovery

view channel

Molecule in Green Tea Used as Carrier for Anticancer Proteins

A molecule that is a key ingredient in green tea can be employed as a carrier for anticancer proteins, forming a stable and effective therapeutic nanocomplex. This new discovery could help to construct better drug-delivery systems. Some cancer treatments depend on medication comprising the therapeutic drug and a carrier... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.