Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Human Proteome Catalog Created for Speeding Research and Diagnostic Development

By BiotechDaily International staff writers
Posted on 30 Jun 2014
An international team of researchers recently created an initial catalog of the human “proteome,” in an effort to provide a protein equivalent of the Human Genome Project. Using 30 different human tissues in total, the scientists identified proteins encoded by 17,294 genes, which is approximately 84% of all of the genes in the human genome predicted to encode proteins.

The project was described May 28, 2014, in the journal Nature, the scientists also reported the identification of 193 novel proteins that came from regions of the genome not expected to code for proteins, suggesting that the human genome is more complicated than earlier believed. The cataloging project, led by researchers at the Johns Hopkins University (Baltimore, MD, USA) and the Institute of Bioinformatics (Bangalore, India; www.ibioinformatics.org), should provide a vital source for biologic research and medical diagnostics, according to the team’s leaders.

“You can think of the human body as a huge library where each protein is a book,” said Akhilesh Pandey, MD, PhD, a professor at the McKusick-Nathans Institute of Genetic Medicine and of biological chemistry, pathology, and oncology at the Johns Hopkins University and the founder and director of the Institute of Bioinformatics. “The difficulty is that we don’t have a comprehensive catalog that gives us the titles of the available books and where to find them. We think we now have a good first draft of that comprehensive catalog.”

Whereas genes determine many of the characteristics of an organism, they do so by providing instructions for creating proteins, the building blocks and taskmasters of cells, and therefore of tissues and organs. For this reason, many investigators believe a catalog of human proteins—and their location within the body—to be even more informative and useful than the catalog of genes in the human genome.

Examining proteins is far more technically problematic than studying genes, Dr. Pandey noted, because the structures and functions of proteins are complex and varied. Furthermore, to just list of existing proteins would not be very helpful without accompanying data about where in the body those proteins are found. Therefore, most protein studies to date have focused on individual tissues, often in the context of specific diseases, he added.

To achieve a more comprehensive survey of the proteome, the researchers started by taking samples of 30 tissues, extracting their proteins and using enzymes like chemical scissors to cut them into smaller pieces, called peptides. They then ran the peptides through a series of instruments designed to figure out their identity and measure their relative abundance. “By generating a comprehensive human protein dataset, we have made it easier for other researchers to identify the proteins in their experiments,” said Dr. Pandey. “We believe our data will become the gold standard in the field, especially because they were all generated using uniform methods and analysis, and state-of-the-art machines.”

Among the proteins whose data patterns have been characterized for the first time are many that were never predicted to exist. The researchers’ most unexpected finding was that 193 of the proteins they identified could be traced back to these apparently noncoding regions of DNA. “This was the most exciting part of this study, finding further complexities in the genome,” remarked Dr. Pandey. “The fact that 193 of the proteins came from DNA sequences predicted to be noncoding means that we don’t fully understand how cells read DNA, because clearly those sequences do code for proteins.”

Dr. Pandey believes that the human proteome is so extensive and complex that researchers’ catalog of it will never be fully complete, but this research provides a solid foundation that others can effectively build upon.

Related Links:

Johns Hopkins University
Institute of Bioinformatics



Channels

Genomics/Proteomics

view channel
Image: Cancer cells, left, were pretreated with a drug that blocks the ERK signal, and right, without the pretreatment. Top cells are untreated, while the bottom ones are stimulated (Photo courtesy of the Weizmann Institute of Science).

Prevention of ERK Nuclear Translocation Blocks Cancer Proliferation in Animal Models

A team of cell biologists has shown that the cancer promoting effects of ERK dysregulation can be blocked by low molecular weight drugs that prevent translocation of this kinase from the cells' cytoplasm... Read more

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

21 Apr 2015 - 23 Apr 2015
21 Apr 2015 - 23 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.