Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
BioConferenceLive

Small-Scale Incubator Microscope Designed to Study Cells in Time Lapse

By BiotechDaily International staff writers
Posted on 11 Jun 2014
Image: No bigger than a soda can, the small-scale incubator microscope is a space-saving and cost effective solution for time-lapse observation of cell cultures (Photo courtesy of Fraunhofer IBMT).
Image: No bigger than a soda can, the small-scale incubator microscope is a space-saving and cost effective solution for time-lapse observation of cell cultures (Photo courtesy of Fraunhofer IBMT).
German scientists have now devised innovative technology that combines the functions of both incubators and microscopes in a compact small-scale system. It is ideally suited for time-lapse study over a number of weeks and for automatic observation of cell cultures. The incubator microscope is no bigger than a soda can, and costs 30 times less than purchasing an incubator and a microscope separately.

Similar to humans, cells require nutrients to survive. Cultivating human and animal cells requires parameters such as temperature and humidity to be specified with absolute precision and maintained at an even level over long periods of time. Time-lapse observation over a period of some weeks can be particularly beneficial, since a lot occurs in that time in terms of cell reproduction and differentiation. Until now, the typical way to make these sorts of observations has been to use small incubators in combination with traditional microscopes. This takes up about one square meter of space, making operating several such systems alongside each other an inefficient process. There is a need for innovative solutions that will substantially reduce the space needed and the costs involved without compromising the quality of the cultivation and of the microscope images recorded.

The small-scale incubator microscope system can be used for time-lapse observation of cell cultures as well as to collect fluorescent images at different wavelengths. It includes a small incubation chamber and control electronics to provide defined cell culture parameters. Cells grow on the floor of the miniaturized incubation chamber on a thin, replaceable glass plate and are supplied with a constant stream of nutrients. The only parameters that need to be kept constant within the incubator are the temperature and the nutrient supply flow rate. The small-scale incubator microscope allows for many units to be operated in parallel in a very compact space. Moreover, in spite of its space-saving design, the system generates images that are almost as good as those of the bigger microscopes.

Prototype versions are now in use in a range of research projects. “The system is stable and can be used for time-lapse observation spanning several weeks,” commented Dr. Thomas Velten, head of the biomedical microsystems department at the Fraunhofer Institute for Biomedical Engineering IBMT (Berlin, Germany). The device continuously gathers data and saves them to a computer. Images can be accessed at any time and analyzed using the appropriate image processing software.

“Our customers get a biomedical analysis tool of the highest quality—well priced, space-saving, and tailored to their needs,” concluded Dr. Velten. The incubator microscope is suited to a wide variety of applications, for instance examining the reaction of cells to nanoparticles or toxic agents in the environment. Another current application is stem cell research. “The system is compact, mobile, extremely efficient, and fully automatic in operation.”

Related Links:

The Fraunhofer Institute for Biomedical Engineering IBMT



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.