Features Partner Sites Information LinkXpress
Sign In
Demo Company

“Nanodaisies” Designed to Transport Drug Cocktail to Cancer Cells

By BiotechDaily International staff writers
Posted on 09 Jun 2014
Print article
Image: Early tests of the “nanodaisy” drug delivery technique show promise against a number of cancers (Photo courtesy of Ran Mo).
Image: Early tests of the “nanodaisy” drug delivery technique show promise against a number of cancers (Photo courtesy of Ran Mo).
The researchers are from the joint biomedical engineering program at North Carolina State University (Raleigh, USA) and the University of North Carolina at Chapel Hill (USA). “We found that this technique was much better than conventional drug-delivery techniques at inhibiting the growth of lung cancer tumors in mice,” stated Dr. Zhen Gu, senior author of the study and an assistant professor in the joint biomedical engineering program. “And based on in vitro tests in nine different cell lines, the technique is also promising for use against leukemia, breast, prostate, liver, ovarian, and brain cancers.”

To construct the “nanodaisies,” the researchers started with a solution that contains a polymer called polyethylene glycol (PEG). The PEG forms long strands that have much shorter strands splitting off to either side. Researchers directly attach the anticancer drug camptothecin (CPT) onto the shorter strands and introduce the anticancer drug doxorubicin (Dox) into the solution.

PEG is hydrophilic; CPT and Dox are hydrophobic. As a result, the CPT and Dox cluster together in the solution, wrapping the PEG around themselves. This results in a daisy-shaped drug cocktail, only 50 nm in diameter, which can be injected into a cancer patient. Once injected, the nanodaisies glide through the bloodstream until they are absorbed by cancer cells. In fact, one of the reasons the researchers chose to use PEG is because it has chemical properties that prolong the life of the drugs in the bloodstream.

Once in a cancer cell, the drugs are released. “Both drugs attack the cell’s nucleus, but via different mechanisms,” said Dr. Wanyi Tai, lead author and a former postdoctoral researcher in Dr. Gu’s lab. “Combined, the drugs are more effective than either drug is by itself,” Dr. Gu concluded. “We are very optimistic about this technique and are hoping to begin preclinical testing in the near future.”

The study’s findings were published May 27, 2014, in the journal Biomaterials.

Related Links:

North Carolina State University
University of North Carolina at Chapel Hill

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.