Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

“Nanodaisies” Designed to Transport Drug Cocktail to Cancer Cells

By BiotechDaily International staff writers
Posted on 09 Jun 2014
Image: Early tests of the “nanodaisy” drug delivery technique show promise against a number of cancers (Photo courtesy of Ran Mo).
Image: Early tests of the “nanodaisy” drug delivery technique show promise against a number of cancers (Photo courtesy of Ran Mo).
The researchers are from the joint biomedical engineering program at North Carolina State University (Raleigh, USA) and the University of North Carolina at Chapel Hill (USA). “We found that this technique was much better than conventional drug-delivery techniques at inhibiting the growth of lung cancer tumors in mice,” stated Dr. Zhen Gu, senior author of the study and an assistant professor in the joint biomedical engineering program. “And based on in vitro tests in nine different cell lines, the technique is also promising for use against leukemia, breast, prostate, liver, ovarian, and brain cancers.”

To construct the “nanodaisies,” the researchers started with a solution that contains a polymer called polyethylene glycol (PEG). The PEG forms long strands that have much shorter strands splitting off to either side. Researchers directly attach the anticancer drug camptothecin (CPT) onto the shorter strands and introduce the anticancer drug doxorubicin (Dox) into the solution.

PEG is hydrophilic; CPT and Dox are hydrophobic. As a result, the CPT and Dox cluster together in the solution, wrapping the PEG around themselves. This results in a daisy-shaped drug cocktail, only 50 nm in diameter, which can be injected into a cancer patient. Once injected, the nanodaisies glide through the bloodstream until they are absorbed by cancer cells. In fact, one of the reasons the researchers chose to use PEG is because it has chemical properties that prolong the life of the drugs in the bloodstream.

Once in a cancer cell, the drugs are released. “Both drugs attack the cell’s nucleus, but via different mechanisms,” said Dr. Wanyi Tai, lead author and a former postdoctoral researcher in Dr. Gu’s lab. “Combined, the drugs are more effective than either drug is by itself,” Dr. Gu concluded. “We are very optimistic about this technique and are hoping to begin preclinical testing in the near future.”

The study’s findings were published May 27, 2014, in the journal Biomaterials.

Related Links:

North Carolina State University
University of North Carolina at Chapel Hill



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.