Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Compact Ultralow Temperature Storage Solutions Available

By BiotechDaily International staff writers
Posted on 01 Jun 2014
Image: The Hamilton BIOS M Ultra-low Temperature Storage System (Photo courtesy of Hamilton Storage Technologies).
Image: The Hamilton BIOS M Ultra-low Temperature Storage System (Photo courtesy of Hamilton Storage Technologies).
A line of advanced deep freezers with robotic sample access is now available for biotech and life science laboratories.

The Hamilton Storage Technologies (Franklin, MA, USA) BiOS M and L are two compact high-density systems for the ultralow-temperature storage of sensitive biological samples.

All samples within the BiOS systems are stored in -80 degrees Celsius chest freezer compartments to maintain temperature stability. All internal workflows, including sample picking, are optimized to keep samples at ultralow temperatures at all times. System parts are easily accessible for service and maintenance, while one-dimensional and two-dimensional barcode reading and sample tracking provide complete chain-of-custody documentation—a requirement for forensic laboratories. Multiple backup systems ensure that samples stay at -80 degrees Celsius in the event of power failure.

“By adding smaller configurations of our high-capacity BiOS -80 degree Celsius storage system, more labs have access to state-of-the-art sample storage within steps of their sample preparation and analysis stations,” said Dr. Martin Frey, PhD, head of Hamilton Storage Technologies. “This reduces the likelihood that results may be compromised.”

Related Links:
Hamilton Storage Technologies



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Diagram illustrates the innovative process that could lead to more effective drugs against influenza infection (Photo courtesy of the Hebrew University of Jerusalem).

Researchers Show How the Influenza Virus Blocks Natural Killer Cell Recognition

A team of molecular virologists has described how the influenza virus evolved a defense mechanism to protect it from attack by the immune system's natural killer (NK) cells. The recognition of pathogen-infected... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.