Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Bioprinting 3D Technology Mimics Liver to Detoxify Blood

By BiotechDaily International staff writers
Posted on 27 May 2014
Image: Nanoengineers have developed a 3D printed device inspired by the liver to remove dangerous toxins from the blood. The device, which is designed to be used outside the body like dialysis, uses nanoparticles to trap pore-forming toxins that can damage cellular membranes and are a key factor in illnesses that result from animal bites and stings, and bacterial infections (Photo courtesy of UCSD – the University of California, San Diego).
Image: Nanoengineers have developed a 3D printed device inspired by the liver to remove dangerous toxins from the blood. The device, which is designed to be used outside the body like dialysis, uses nanoparticles to trap pore-forming toxins that can damage cellular membranes and are a key factor in illnesses that result from animal bites and stings, and bacterial infections (Photo courtesy of UCSD – the University of California, San Diego).
Nanoengineers have developed a three-dimensional (3D)-printed device to act like the liver to remove harmful toxins from the blood. The device, which is designed to be used outside the body, similar to dialysis, utilizes nanoparticles to trap pore-forming toxins that can injure cellular membranes and are a major factor in disorders that result from stings, animal bites, and bacterial infections.

The study’s findings were published May 8, 2014, in the journal Nature Communications. Nanoparticles have already been shown to be effective at neutralizing pore-forming toxins in the blood, but if those nanoparticles cannot be effectively digested, they can accumulate in the liver creating a risk of secondary poisoning, particularly among patients who are already at risk of liver failure. To resolve this problem, a team of investigators, led by University of California, San Diego’s (UCSD; USA) nanoengineering Prof. Shaochen Chen devised a 3D-printed hydrogel matrix to hold nanoparticles, forming a device that mimics the function of the liver by sensing, attracting, and capturing toxins channeled from the blood.

The device, which is in the proof-of-concept phase, replicates the structure of the liver but has a larger surface area designed to effectively lure and trap toxins within the device. In an in vitro study, the device totally neutralized pore-forming toxins. “One unique feature of this device is that it turns red when the toxins are captured,” said the co-first author, Xin Qu, who is a postdoctoral researcher working in Prof. Chen’s laboratory. “The concept of using 3D printing to encapsulate functional nanoparticles in a biocompatible hydrogel is novel,” said Prof. Chen. “This will inspire many new designs for detoxification techniques since 3D printing allows user-specific or site-specific manufacturing of highly functional products.”

Prof. Chen’s lab has already validated the ability to print complex 3D microstructures, such as blood vessels, in only seconds out of soft biocompatible hydrogels that contain living cells.

Related Links:

University of California, San Diego



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: The new peptide offers a triple hormone effect in a single-cell molecule (Photo courtesy of Indiana University).

Tripeptide Drug Effectively Controls Metabolic Syndrome in Rodent Model

Promising results in reducing obesity and normalizing glucose metabolism obtained with a synthetic dipeptide drug have been enhanced by the addition of a molecule of a third hormone, glucagon.... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.