Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Bioprinting 3D Technology Mimics Liver to Detoxify Blood

By BiotechDaily International staff writers
Posted on 27 May 2014
Image: Nanoengineers have developed a 3D printed device inspired by the liver to remove dangerous toxins from the blood. The device, which is designed to be used outside the body like dialysis, uses nanoparticles to trap pore-forming toxins that can damage cellular membranes and are a key factor in illnesses that result from animal bites and stings, and bacterial infections (Photo courtesy of UCSD – the University of California, San Diego).
Image: Nanoengineers have developed a 3D printed device inspired by the liver to remove dangerous toxins from the blood. The device, which is designed to be used outside the body like dialysis, uses nanoparticles to trap pore-forming toxins that can damage cellular membranes and are a key factor in illnesses that result from animal bites and stings, and bacterial infections (Photo courtesy of UCSD – the University of California, San Diego).
Nanoengineers have developed a three-dimensional (3D)-printed device to act like the liver to remove harmful toxins from the blood. The device, which is designed to be used outside the body, similar to dialysis, utilizes nanoparticles to trap pore-forming toxins that can injure cellular membranes and are a major factor in disorders that result from stings, animal bites, and bacterial infections.

The study’s findings were published May 8, 2014, in the journal Nature Communications. Nanoparticles have already been shown to be effective at neutralizing pore-forming toxins in the blood, but if those nanoparticles cannot be effectively digested, they can accumulate in the liver creating a risk of secondary poisoning, particularly among patients who are already at risk of liver failure. To resolve this problem, a team of investigators, led by University of California, San Diego’s (UCSD; USA) nanoengineering Prof. Shaochen Chen devised a 3D-printed hydrogel matrix to hold nanoparticles, forming a device that mimics the function of the liver by sensing, attracting, and capturing toxins channeled from the blood.

The device, which is in the proof-of-concept phase, replicates the structure of the liver but has a larger surface area designed to effectively lure and trap toxins within the device. In an in vitro study, the device totally neutralized pore-forming toxins. “One unique feature of this device is that it turns red when the toxins are captured,” said the co-first author, Xin Qu, who is a postdoctoral researcher working in Prof. Chen’s laboratory. “The concept of using 3D printing to encapsulate functional nanoparticles in a biocompatible hydrogel is novel,” said Prof. Chen. “This will inspire many new designs for detoxification techniques since 3D printing allows user-specific or site-specific manufacturing of highly functional products.”

Prof. Chen’s lab has already validated the ability to print complex 3D microstructures, such as blood vessels, in only seconds out of soft biocompatible hydrogels that contain living cells.

Related Links:

University of California, San Diego



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.