Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Graphene Could Reshape Neurological Disease Care

By BiotechDaily International staff writers
Posted on 14 May 2014
Print article
Image: Structure of graphene (Photo courtesy of Wikimedia).
Image: Structure of graphene (Photo courtesy of Wikimedia).
Graphene, a two-dimensional (2D) crystalline allotrope of carbon, may lead to new advances in several areas of neurosurgery, according to a new topic review.

Researchers at the University of Illinois College of Medicine (Peoria, USA) and Invision Health Brain and Spine Center (Williamsville, NY, USA) argue that neurosurgeons could use graphene-based metamaterials, which possess unique optical, thermal, mechanical, electronic, and quantum properties, to encourage the development of high-performance, lightweight, and malleable electronic devices, ultracapacitors, optical modulators, molecular biodevices, organic photovoltaic cells, lithium-ion microbatteries, frequency multipliers, quantum dots, and integrated circuits.

According to the review, these potential breakthroughs in graphene biomedical technology over the next few decades could significantly impact several areas of neurosurgery, including neuro-oncology, neurointensive care, neuroregeneration research, peripheral nerve surgery, functional neurosurgery, and spine surgery. The review also provides an introduction to the main properties of graphene and discusses future perspectives of ongoing frontline investigations of graphene, with special emphasis on research fields that are expected to substantially impact experimental and clinical neurosurgery. The topic review was published in the May 2014 issue of Neurosurgery.

“While graphene has been shown to be biocompatible, more basic research is needed to examine the long-term biological effects of graphene implants and to answer other important clinical questions,” concluded study authors Tobias Mattei, MD, and Azeem Rehman, BSc. “Increased awareness of the ongoing frontline research on graphene may enable the neurosurgical community to properly take advantage of the technological applications such a new metamaterial may offer.”

Graphene is a monolayer atomic-scale honeycomb lattice of carbon atoms which combines the greatest mechanical strength ever measured in any material (natural or artificial) with very light weight and high elasticity. Graphene has unique optical and photothermal properties which allow it to release energy in the form of heat in response to light input; it also has very high electrical conductivity. The high surface area allows bioconjugation with common biomolecules. Andre Geim and Kostya Novoselov of the University of Manchester (United Kingdom) were awarded the Nobel Prize in Physics in 2010 for its development.

Related Links:

Invision Health Brain and Spine Center
University of Illinois College of Medicine



Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.