Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Neuroscientists Use MRI Sensors to Map Neural Activity

By BiotechDaily International staff writers
Posted on 14 May 2014
Image: A series of three MRI images (top row) shows how dopamine concentrations change over time in the brain’s ventral striatum (Photo collage courtesy of Christine Daniloff/MIT, with images courtesy of the MIT researchers).
Image: A series of three MRI images (top row) shows how dopamine concentrations change over time in the brain’s ventral striatum (Photo collage courtesy of Christine Daniloff/MIT, with images courtesy of the MIT researchers).
Investigators have devised a new technique that allows them to track neural communication in the brain over time, using magnetic resonance imaging (MRI) combined with a specialized molecular sensor.

The US BRAIN Initiative, launched in 2013, has a goal to transform the understanding of cognition by mapping the activity of every neuron in the human brain, revealing how brain circuits interact to create memories, learn new skills, and interpret the surrounding environment.

To accomplish this, neuroscientists need new approaches that will let them examine the brain more comprehensively and in greater detail, according to Dr. Alan Jasanoff, a Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) associate professor of biological engineering. “There’s a general recognition that in order to understand the brain’s processes in comprehensive detail, we need ways to monitor neural function deep in the brain with spatial, temporal, and functional precision,” he said.

Dr. Jasanoff and colleagues have now moved closer toward that objective. This is the first time researchers has been able to map neural signals with high precision over large brain regions in living animals, providing new insights into brain function, according to Dr. Jasanoff, who is also an associate member of MIT’s McGovern Institute for Brain Research.

The scientists used this molecular imaging approach, described May 2, 2014, in Science, to explore the neurotransmitter dopamine in a region of the brain called the ventral striatum, which is involved in reward, motivation, and reinforcement of behavior. Dr. Jasanoff plans in future research to combine dopamine imaging with functional MRI techniques that measure overall brain activity to gain a better determination of how dopamine levels affect neural circuitry. “We want to be able to relate dopamine signaling to other neural processes that are going on,” Dr. Jasanoff stated. “We can look at different types of stimuli and try to understand what dopamine is doing in different brain regions and relate it to other measures of brain function.”

Much of the brain’s dopamine is generated by a structure called the ventral tegmental area (VTA). This dopamine moves through the mesolimbic pathway to the ventral striatum, where it combines with sensory data from other parts of the brain to reinforce behavior and help the brain learn new tasks and motor functions. This circuit also plays a major role in addiction.

To monitor dopamine’s role in neural communication, the researchers utilized an MRI sensor they had previously designed, consisting of an iron-containing protein that acts as a weak magnet. When the sensor binds to dopamine, its magnetic interactions with the surrounding tissue weaken, which dims the tissue’s MRI signal. This allows the researchers to see where in the brain dopamine is being released. The researchers also developed an algorithm to calculate the exact amount of dopamine present in each fraction of a cubic millimeter of the ventral striatum.

After delivering the MRI sensor to the ventral striatum of rats, the scientists electrically stimulated the mesolimbic pathway, and were able to identify exactly where in the ventral striatum dopamine was released. An area known as the nucleus accumbens core, known to be one of the key targets of dopamine from the VTA, showed the highest levels. The researchers also observed that some dopamine is released in neighboring regions such as the ventral pallidum, which controls motivation and emotions, and parts of the thalamus, which transmits sensory and motor signals in the brain.

Each dopamine stimulation session lasted for 16 seconds and the researchers captured an MRI image every eight seconds, allowing them to monitor how dopamine levels changed as the neurotransmitter was released from cells and then disappeared. “We could divide up the map into different regions of interest and determine dynamics separately for each of those regions,” Dr. Jasanoff remarked.

The researchers plan to expand the research by increasing their studies to other parts of the brain, including the areas most affected by Parkinson’s disease, which is caused by the death of dopamine-generating cells. Dr. Jasanoff’s lab is also working on sensors to track other neurotransmitters, allowing them to study interactions between neurotransmitters during different tasks.

Related Links:

Massachusetts Institute of Technology



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.